Bioactivities of In Vitro Transepithelial Transported Peptides from Cooked Chicken Breast

Author(s):  
Ali Hamzeh ◽  
Papungkorn Sangsawad ◽  
Parinya Noisa ◽  
Kiattawee Choowongkomon ◽  
Jirawat Yongsawatdigul
Keyword(s):  
2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 575
Author(s):  
Johana Marquez ◽  
Albeiro Marrugo Padilla ◽  
Darío Méndez Cuadro ◽  
Erika Rodríguez Cavallo

Background: Worldwide, chicken meat is widely consumed due to its low cost, high nutritional value and non-interference with religious or cultural beliefs. However, during animal husbandry chickens are exposed to many chemical substances, including tetracyclines and β-lactams, which are used to prevent and cure several infections. Some residues of these compounds may bioaccumulate and be present in chicken meat after slaughtering, promoting oxidative reactions. Methods: In order to evaluate in vitro carbonylation induced by tetracyclines and β-lactams residues, a proteomic approach was used. For this, chicken muscle was individually contaminated with tetracyclines (tetracycline, chlortetracycline, oxytetracycline, and doxycycline) and β-lactams (ampicillin, benzathine penicillin, dicloxacillin and oxacillin) at 0.5, 1.0 and 1.5 times their maximum residue level (MRL). Then, sarcoplasmic, myofibrillar and insoluble proteins were extracted and their content were measured using the Bradford method. Protein carbonylation was measured using the 2,4-Dinitrophenylhydrazine alkaline method. Results: Residues of tetracyclines and β-lactams induced in vitro carbonylation on sarcoplasmic, myofibrillar and insoluble proteins even at 0.5MRL concentrations (p<0.05). When comparing the carbonylation induced by both antibiotics no differences were found (p>0.05). Variables such as the partition coefficient (log P) and the concentration of these antibiotics showed a high correlation with the oxidative capacity of tetracyclines and β-lactams on chicken breast proteins. Conclusions: This study shows that the presence of tetracyclines and β-lactams residues at MRLs concentrations promotes in vitro carbonylation on chicken breast proteins. Our results provide important insights about the impact of antibiotics on the integrity of meat proteins intended for human consumption.


Data in Brief ◽  
2020 ◽  
Vol 32 ◽  
pp. 106160
Author(s):  
Johana Márquez-Lázaro ◽  
Leticia Mora ◽  
Darío Méndez-Cuadro ◽  
Erika Rodríguez-Cavallo ◽  
Fidel Toldrá

2018 ◽  
Vol 19 (10) ◽  
pp. 3165 ◽  
Author(s):  
Yang Liu ◽  
Li Guo ◽  
Mire Zloh ◽  
Yujuan Zhang ◽  
Jinhu Huang ◽  
...  

Florfenicol (FFC) is a valuable synthetic fluorinated derivative of thiamphenicol widely used to treat infectious diseases in food animals. The aims of the study were to investigate whether FFC is a substrate for the breast cancer resistance protein (BCRP) and whether the transporter influences oral availability of FFC. In vitro transport assays using MDCK-chAbcg2 cells were conducted to assess chicken BCRP-mediated transport of FFC, while in vivo pharmacokinetic experiments with single or combined BCRP inhibitor gefitinib were employed to study the role of BCRP in oral FFC disposition. According to U.S. Food and Drug Administration (FDA) criteria, FFC was found to be a potential BCRP substrate due to the net efflux ratio being over 2.0 (2.37) in MDCK cells stably transfected with chicken BCRP and the efflux completely reversed by a BCRP inhibitor (Gefitinib). The molecular docking results indicated that florfenicol can form favorable interactions with the binding pocket of homology modeled chicken BCRP. Pharmacokinetic studies of FFC in different aged broilers with different expression levels of BCRP showed that higher BCRP expression would cause a lower Area Under Curve (AUC) and a higher clearance of FFC. In addition, more extensive absorption of florfenicol after the co-administration with gefitinib (a BCRP inhibitor) was observed. The overall results demonstrated that florfenicol is a substrate of the chicken breast cancer resistant protein which in turn affects its pharmacokinetic behavior.


2018 ◽  
Vol 81 (11) ◽  
pp. 1844-1850 ◽  
Author(s):  
CAMILA VERÍSSIMO DE SALES ◽  
ADMA NADJA FERREIRA DE MELO ◽  
KATARZYNA MARIA NIEDZWIEDZKA ◽  
EVANDRO LEITE DE SOUZA ◽  
DONALD W. SCHAFFNER ◽  
...  

ABSTRACT Fifteen outbreak-linked Salmonella enterica strains in chicken meat were evaluated under simulated human gastrointestinal conditions for their resistance and susceptibility to 11 antibiotics from seven antibiotic classes. The MIC of each antibiotic was determined by microdilution in broth before and after the exposure of each strain to a continuous system simulating the conditions in the human mouth, esophagus-stomach, duodenum, and ileum. Strains were inoculated onto chicken breast (9 g; inoculated at 5 log CFU/g) prior to exposure. Data were interpreted according Clinical and Laboratory Standards Institute breakpoints. After the in vitro digestion, 12 Salmonella strains with reduced susceptibility to ciprofloxacin (CIP) changed to CIP resistant. The ceftriaxone (CTX)–intermediate Salmonella Newport strain changed to CTX resistant. The ampicillin (AMP)–susceptible Salmonella Heidelberg strain changed to AMP resistant, and the sulfamethoxazole-trimethoprim (SXT)–susceptible strains of Salmonella serovars Typhimurium, Agona, Newport, Albany, and Corvallis changed to SXT resistant. The Salmonella Heidelberg, Salmonella Newport, Salmonella Albany, and Salmonella Corvallis strains had the highest frequency of changes in antibiotic susceptibility with new resistant phenotypes to AMP and CIP, CTX and SXT, CIP and SXT, and CIP and SXT, respectively. Conditions imposed by a simulated gastrointestinal environment changed the susceptibility of S. enterica strains to clinically relevant antibiotics and should be considered in the selection of therapies for human salmonellosis.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Jianan Liu ◽  
Hongyan Wu ◽  
Xinying Ao ◽  
Hongshun Hao ◽  
Jingran Bi ◽  
...  

The aim of this study was to develop inclusions formed by γ-cyclodextrin (γ-CD) and three isothiocyanates (ITCs), including benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and 3-methylthiopropyl isothiocyanate (MTPITC) to improve their controlled release for the inhibition of Staphylococcus aureus (S. aureus). These inclusion complexes were characterized using X-ray diffraction, Fourier-transform infrared, thermogravimetry, and scanning electron microscopy (SEM), providing appropriate evidence to confirm the formation of inclusion complexes. Preliminary evaluation of the antimicrobial activity of the different inclusion complexes, carried out in vitro by agar diffusion, showed that such activity lasted 5–7 days longer in γ-CD-BITC, in comparison with γ-CD-PEITC and γ-CD-MTPITC. The biofilm formation was less in S. aureus treated with γ-CD-BITC than that of BITC by using crystal violet quantification assay and SEM. The expression of virulence genes, including sarA, agr, cp5D, cp8F, clf, nuc, and spa, showed sustained downregulation in S. aureus treated with γ-CD-BITC for 24 h by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the growth of S. aureus in cooked chicken breast treated with γ-CD-BITC and BITC was predicted by the Gompertz model. The lag time of γ-CD-BITC was 1.3–2.4 times longer than that of BITC, and correlation coefficient (R2) of the secondary models was 0.94–0.99, respectively. These results suggest that BITC has a more durable antibacterial effect against S. aureus after encapsulation by γ-CD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Liu ◽  
Lu Liu ◽  
Jie Wang ◽  
Huanxian Cui ◽  
Guiping Zhao ◽  
...  

The glycogen content in muscle of livestock and poultry animals affects the homeostasis of their body, growth performance, and meat quality after slaughter. FOS-like 2, AP-1 transcription factor subunit (FOSL2) was identified as a candidate gene related to muscle glycogen (MG) content in chicken in our previous study, but the role of FOSL2 in the regulation of MG content remains to be elucidated. Differential gene expression analysis and weighted gene coexpression network analysis (WGCNA) were performed on differentially expressed genes (DEGs) in breast muscle tissues from the high-MG-content (HMG) group and low-MG-content (LMG) group of Jingxing yellow chickens. Analysis of the 1,171 DEGs (LMG vs. HMG) identified, besides FOSL2, some additional genes related to MG metabolism pathway, namely PRKAG3, CEBPB, FOXO1, AMPK, and PIK3CB. Additionally, WGCNA revealed that FOSL2, CEBPB, MAP3K14, SLC2A14, PPP2CA, SLC38A2, PPP2R5E, and other genes related to the classical glycogen metabolism in the same coexpressed module are associated with MG content. Also, besides finding that FOSL2 expression is negatively correlated with MG content, a possible interaction between FOSL2 and CEBPB was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes) database. Furthermore, we investigated the effects of lentiviral overexpression of FOSL2 on the regulation of the glycogen content in vitro, and the result indicated that FOSL2 decreases the glycogen content in DF1 cells. Collectively, our results confirm that FOSL2 has a key role in the regulation of the MG content in chicken. This finding is helpful to understand the mechanism of MG metabolism regulation in chicken and provides a new perspective for the production of high-quality broiler and the development of a comprehensive nutritional control strategy.


2020 ◽  
Vol 326 ◽  
pp. 126922 ◽  
Author(s):  
Johana P. Márquez-Lázaro ◽  
Leticia Mora ◽  
Darío Méndez-Cuadro ◽  
Erika Rodríguez-Cavallo ◽  
Fidel Toldrá
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Aditya S. Gokhale ◽  
Raymond R. Mahoney

The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (anin vitroindicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.


Sign in / Sign up

Export Citation Format

Share Document