scholarly journals Identification of thermal material parameters for thermo-mechanically coupled material models

Meccanica ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 393-416
Author(s):  
L. Rose ◽  
A. Menzel

AbstractThe possibility of accurately identifying thermal material parameters on the basis of a simple tension test is presented, using a parameter identification framework for thermo-mechanically coupled material models on the basis of full field displacement and temperature field measurements. Main objective is to show the impact of the material model formulation on the results of such an identification with respect to accuracy and uniqueness of the result. To do so, and as a proof of concept, the data of two different experiments is used. One experiment including cooling of the specimen, due to ambient temperature, and one without specimen cooling. The main constitutive relations of two basic material models are summarised (associated and non-associated plasticity), whereas both models are extended so as to introduce an additional material parameter for the thermodynamically consistent scaling of dissipated energy. The chosen models are subjected to two parameter identifications each, using the data of either experiment and focusing on the determination of thermal material parameters. The influence of the predicted dissipated energy of the models on the identification process is investigated showing that a specific material model formulation must be chosen carefully. The material model with associated evolution equations used within this work does neither allow a unique identification result, nor is any of the solutions for the underlying material parameters close to literature values. In contrast to that, a stable, that is locally unique, re-identification of the literature values is possible for the boundary problem at hand if the model with non-associated evolution equation is used and if cooling is included in the experimental data.

2020 ◽  
Vol 2 (4) ◽  
pp. 11-33
Author(s):  
Anna Pandolfi ◽  
Andrea Montanino

Purpose: The geometries used to conduct numerical simulations of the biomechanics of the human cornea are reconstructed from images of the physiological configuration of the system, which is not in a stress-free state because of the interaction with the surrounding tissues. If the goal of the simulation is a realistic estimation of the mechanical engagement of the system, it is mandatory to obtain a stress-free configuration to which the external actions can be applied. Methods: Starting from a unique physiological image, the search of the stress-free configuration must be based on methods of inverse analysis. Inverse analysis assumes the knowledge of one or more geometrical configurations and, chosen a material model, obtains the optimal values of the material parameters that provide the numerical configurations closest to the physiological images. Given the multiplicity of available material models, the solution is not unique. Results: Three exemplary material models are used in this study to demonstrate that the obtained, non-unique, stress-free configuration is indeed strongly dependent on both material model and on material parameters. Conclusion: The likeliness of recovering the actual stress-free configuration of the human cornea can be improved by using and comparing two or more imaged configurations of the same cornea.


2022 ◽  
Vol 23 (1) ◽  
pp. 412-423
Author(s):  
Sharis-Shazzali Shahimi ◽  
Nur Azam Abdullah ◽  
Ameen Topa ◽  
Meftah Hrairi ◽  
Ahmad Faris Ismail

A numerical investigation is conducted on a rotating engine blade subjected to a bird strike impact. The bird strike is numerically modelled as a cylindrical gelatine with hemispherical ends to simulate impact on a rotating engine blade. Numerical modelling of a rotating engine blade has shown that bird strikes can severely damage an engine blade, especially as the engine blade rotates, as the rotation causes initial stresses on the root of the engine blade. This paper presents a numerical modelling of the engine blades subjected to bird strike with porosity implemented on the engine blades to investigate further damage assessment due to this porosity effect. As porosity influences the decibel levels on a propeller blade or engine blade, the damage due to bird strikes can investigate the compromise this effect has on the structural integrity of the engine blades. This paper utilizes a bird strike simulation through an LS-Dyna Pre-post software. The numerical constitutive relations are keyed into the keyword manager where the bird’s SPH density, a 10 ms simulation time, and bird velocity of 100 m/s are all set. The blade rotates counter-clockwise at 200 rad/s with a tetrahedron mesh. The porous regions or voids along the blade are featured as 5 mm diameter voids, each spaced 5 mm apart. The bird is modelled as an Elastic-Plastic-Hydrodynamic material model to analyze the bird’s fluid behavior through a polynomial equation of state. To simulate the fluid structure interaction, the blade is modelled with Johnson-Cook Material model parameters of aluminium where the damage of the impact can be observed. The observations presented are compared to previous study of a bird strike impact on non-porous engine blades. ABSTRAK: Penyelidikan berangka telah dijalankan ke atas bilah enjin berputar tertakluk kepada impak pelanggaran burung. Pelanggaran burung tersebut telah dimodelkan secara berangka sebagai silinder gelatin dengan hujungnya berbentuk hemisfera demi mensimulasikan impaknya ke atas bilah enjin yang berputar. Pemodelan berangka bilah-bilah enjin yang berputar tersebut menunjukkan bahawa pelanggaran burung mampu menyebabkan kerosakan teruk terhadap bilah enjin terutamanya apabila bilah enjin sedang berputar oleh sebab putaran menghasilkan tekanan asal di pangkal bilah enjin. Kajian ini mengetengahkan pemodelan berangka ke atas bilah-bilah enjin tertakluk kepada pelanggaran burung terhadap bilah-bilah enjin yg mempunyai keliangan demi menyelidik dan menilai kerosakan kesan daripada keliangan tersebut. Keliangan juga mempengaruhi tahap-tahap desibel ke atas bilah kipas ataupun bilah enjin, kerosakan hasil serangan burung boleh menterjemah tahap ketahanan struktur integriti bagi bilah-bilah enjin tersebut. Penyelidikan ini mengguna pakai perisian “LS-Dyna Pre-post” untuk simulasi pelanggaran burung. Hubungan konstitutif berangka telah dimasukkan sebagai kata kunci di mana ketumpatan SPH burung, masa simulasi 10ms, dan halaju burung ditetapkan kepada 100 m/s. Bilah tersebut berputar pada 200 rad/s arah lawan jam dengan jejaring tetrahedron. Kawasan berliang atau kosong di sepanjang bilah ditetapkan diameternya kepada 5 mm, dan dijarakkan 5 mm di antara satu sama lain. Burung pula dimodelkan sebagai material “Elastic-Plastic-Hydrodynamic” untuk mengkaji sifat bendalir burung melalui persamaan polinomial. Demi mensimulasi interaksi struktur bendalir, bilah tersebut dimodelkan sebagai parameter aluminium material “Johnson Cook” di mana kerosakan daripada impak tersebut dapat diteliti. Penelitian-penelitian tersebut dibandingkan dengan kajian terdahulu ke atas serangan burung terhadap bilah-bilah enjin tidak berliang.


Author(s):  
Jukka Ka¨hko¨nen ◽  
Pentti Varpasuo

The paper describes basis of a microplane concrete material model which was implemented in a commercial FE -code using user subroutine interface. The material model is called M4. The motivation for this implementation was a need for a concrete model which would perform well in a soft missile impact analysis. Numerical integration over the surface of a unit sphere is crucial to microplane material models. We tested our microplane implementation using several numerical integration formulas presented in literature. The two fairly simple test cases described in this paper revealed clearly the numerical anisotropy induced by the integration formulations. The impact problem was a medium size, medium velocity soft missile impact test case from an international research program. We compared our implementation of M4 model to a tensorial based damage plasticity concrete model and found out that the results were almost identical. However, the numerical results did not agree well with the measurements in this test case. We concluded this disagreement might be consequence of nonlinear phenomena beyond material constitutive relations.


1995 ◽  
Vol 117 (1) ◽  
pp. 14-19 ◽  
Author(s):  
H. Braasch ◽  
H. Duddeck ◽  
H. Ahrens

The inelastic behavior of materials is described most efficiently by unified models when their material functions are determined so that flow, hardening, creep etc. will be covered correctly. In this paper, the adaptation of a model is not confined to finding the optimal material parameters but is extended to the identification of the optimal shape of the material functions itself. Material functions given by series of simple shape functions defined in discrete sections which merge smoothly together lead to the best adaptation to experimental results. Furthermore, any remaining shortcomings of the model reveal deficiencies in the modelling of the microphysics of the material. Then by careful interpretation of the uncovered physical properties the original material model has to be amended leading to the derivation of even entirely new models. Thus, a powerful tool is presented here by which a unified model can be checked and improved.


Author(s):  
Tim Gilman ◽  
Bill Weitze ◽  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Arturs Kalnins

Applicable design codes for power plant components and pressure vessels demand for a design check against progressive plastic deformation. In the simplest case, this demand is satisfied by compliance with shakedown rules in connection with elastic analyses. The possible non-compliance implicates the requirement of ratcheting analyses on elastic-plastic basis. In this case, criteria are specified on maximum allowable accumulated growth strain without clear guidance on what material models for cyclic plasticity are to be used. This is a considerable gap and a challenge for the practicing CAE (Computer Aided Engineering) engineer. As a follow-up to two independent previous papers PVP2013-98150 ASME [1] and PVP2014-28772 [2] it is the aim of this paper to close this gap by giving further detailed recommendation on the appropriate application of the nonlinear kinematic material model of Chaboche on an engineering scale and based on implementations already available within commercial finite element codes such as ANSYS® and ABAQUS®. Consistency of temperature-dependent runs in ANSYS® and ABAQUS® is to be checked. All three papers together constitute a comprehensive guideline for elasto-plastic ratcheting analysis. The following issues are examined and/or referenced: • Application of monotonic or cyclic material data for ratcheting analysis based on the Chaboche material model • Discussion of using monotonic and cyclic data for assessment of the (non-stabilized) cyclic deformation behavior • Number of backstress terms to be applied for consistent ratcheting results • Consideration of the temperature dependency of the relevant material parameters • Consistency of temperature-dependent runs in ANSYS® and ABAQUS® • Identification of material parameters dependent on the number of backstress terms • Identification of material data for different types of material (carbon steel, austenitic stainless steel) including the appropriate determination of the elastic limit • Quantification of conservatism of simple elastic-perfectly plastic behavior • Application of engineering versus true stress-strain data • Visual checks of data input consistency • Appropriate type of allowable accumulated growth strain. This way, a more accurate inelastic analysis methodology for direct practical application to real world examples in the framework of the design code conforming elasto-plastic ratcheting check is proposed.


2015 ◽  
Vol 729 ◽  
pp. 134-139 ◽  
Author(s):  
Filip Hokes

The topic of this paper is the short review of current state-of-the-art in the field of material models of concrete and its utilization for numerical analysis of concrete and prestressed concrete structures. The problem of compiling constitutive relations for numerical simulation of concrete structures is not yet closed. It is caused by different behavior of concrete in tension and compression. Due to formation and development of cracks it is necessary to describe material model of concrete in tension as precisely as possible. The paper aims to create a brief historical overview in this field and then aims to create a short summary of current approaches that were published in conference contributions and in journals during recent years.


2011 ◽  
Vol 488-489 ◽  
pp. 585-588 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Pawel Baranowski ◽  
Dariusz Rudnik

The objective of this work is to describe part of the selecting process of a rubber-coated fabric material model. The material is used to construct an air cushion that is a carrying element of the cassette pontoon bridge unit. During operation the air cushion is permanently in contact with a metal component, fresh water and air. Therefore various interactions, such as a contact problem, flow of medium and thermodynamics can occur. The basic material model for numerical simulation was selected based on the uniaxial tensile test. The simple method was used to describe time-dependent material properties for numerical analysis, which allows computation to take a reasonable time. In order to assess the usefulness of the selected material model the impact puncture test was modelled with the same conditions and properties as in the laboratory testing machine called Instron. Moreover, an attempt of simulating the damage process is described. The energy absorbed by the material was registered during the laboratory test which was compared with the results of numerical analysis. An acceptable compatibility of the results is noticed.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Mohammad M. Kashani ◽  
Laura N. Lowes ◽  
Adam J. Crewe ◽  
Nicholas A. Alexander

A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC) components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, postbuckling behaviour, and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed responses for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Jürgen Rudolph ◽  
Tim Gilman ◽  
Bill Weitze ◽  
Adrian Willuweit ◽  
Arturs Kalnins

Applicable design codes for power plant components and pressure vessels demand for a design check against progressive plastic deformation. In the simplest case, this demand is satisfied by compliance with shakedown rules in connection with elastic analyses. The possible noncompliance implicates the requirement of ratcheting analyses on elastic–plastic basis. In this case, criteria are specified on maximum allowable accumulated growth strain without clear guidance on what material models for cyclic plasticity are to be used. This is a considerable gap and a challenge for the practicing computer-aided engineering engineer. As a follow-up to two independent previous papers PVP2013-98150 ASME (Kalnins et al., 2013, “Using the Nonlinear Kinematic Hardening Material Model of Chaboche for Elastic-Plastic Ratcheting Analysis,” ASME Paper No. PVP2013-98150.) and PVP2014-28772 (Weitze and Gilman, 2014, “Additional Guidance for Inelastic Ratcheting Analysis Using the Chaboche Model,” ASME Paper No. PVP2014-28772.), it is the aim of this paper to close this gap by giving further detailed recommendation on the appropriate application of the nonlinear kinematic material model of Chaboche on an engineering scale and based on implementations already available within commercial finite element codes such as ANSYS® and ABAQUS®. Consistency of temperature-dependent runs in ANSYS® and ABAQUS® is to be checked. All three papers together constitute a comprehensive guideline for elastoplastic ratcheting analysis. The following issues are examined and/or referenced: (1) application of monotonic or cyclic material data for ratcheting analysis based on the Chaboche material model, (2) discussion of using monotonic and cyclic data for assessment of the (nonstabilized) cyclic deformation behavior, (3) number of backstress terms to be applied for consistent ratcheting results, (4) consideration of the temperature dependency (TD) of the relevant material parameters, (5) consistency of temperature-dependent runs in ANSYS® and ABAQUS®, (6) identification of material parameters dependent on the number of backstress terms, (7) identification of material data for different types of material (carbon steel, austenitic stainless steel) including the appropriate determination of the elastic limit, (8) quantification of conservatism of simple elastic-perfectly plastic (EPP) behavior, (9) application of engineering versus true stress–strain data, (10) visual checks of data input consistency, and (11) appropriate type of allowable accumulated growth strain. This way, a more accurate inelastic analysis methodology for direct practical application to real world examples in the framework of the design code conforming elastoplastic ratcheting check is proposed.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document