scholarly journals Chemical looping with oxygen uncoupling: an advanced biomass combustion technology to avoid CO2 emissions

2019 ◽  
Vol 24 (7) ◽  
pp. 1293-1306 ◽  
Author(s):  
Iñaki Adánez-Rubio ◽  
Antón Pérez-Astray ◽  
Alberto Abad ◽  
Pilar Gayán ◽  
Luis F. De Diego ◽  
...  
2017 ◽  
Vol 33 (4) ◽  
pp. 143-155 ◽  
Author(s):  
Alicja Uliasz-Bocheńczyk ◽  
Aleksandra Pawluk ◽  
Michał Pyzalski

Summary As a result of energy production processes, the power industry is the largest source of CO2 emissions in Poland. Emissions from the energy sector accounted for 52.37% (162 689.57 kt) of the total emissions in 2015, which was estimated at 310.64 million tons of CO2. In recent years, the tightening of regulations on the use of renewable energy sources has resulted in an increased amount of biomass used in the professional energy industry. This is due to the fact that the CO2 emissions from biomass combustion are not included in the total emissions from the combustion of fuels, resulting in the zero- emission factor for biomass. At the same time, according to the hierarchy of waste management methods, recycling is the preferred option for the management of by-products generated during energy production. The fly ashes resulting from the biomass combustion in pulverized boilers (which, due to their chemical composition, can be classified as silicate ash) were subjected to analysis. These ashes can be classified as waste 10 01 17 - fly ash from co-firing other than mentioned in 10 01 16 according to the Regulation of the Minister of the Environment of December 9, 2014 on waste catalogues. The maximum theoretical carbon dioxide binding capacity for the analyzed fly ashes resulting from the co-combustion of biomass is 8.03%. The phase composition analysis of the fly ashes subjected to carbonation process has shown, in addition to the components identified in pure fly ash samples (SiO2, mullite), the presence of calcium carbonate − calcite − the primary product of the carbonation process, as indicated by the results of both X-ray and thermogravimetric analysis.The degree of carbonation has been determined based on the analysis of the results of the phase composition of fly ash resulting from the co-firing of biomass and bituminous coal. The calculated degree of carbonation amounted to 1.51%. The carbonation process is also confirmed by the lowered pH of the water extracts, decreasing from 11.96 for pure ashes to 8.7 for CO2 treated fly ashes. In addition, the carbonation process has reduced the leaching of pollutants, most notably chlorides, sulphates, and potassium.


2014 ◽  
Vol 124 ◽  
pp. 104-114 ◽  
Author(s):  
I. Adánez-Rubio ◽  
A. Abad ◽  
P. Gayán ◽  
L.F. de Diego ◽  
F. García-Labiano ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 73-79
Author(s):  
Vishal Sharma ◽  
Rajeev Kamal Sharma

Fossil fuels are the most common and reliable energy source, which presently fulfill 80% energy requirements all across the world. In the last few decades, over-consumption, fast pace modernization and population growth are some prominent factors which are exploiting the fossil fuels. The degradation of natural resources has gone up at an alarming rate which provoked to look for an alternate source of energy. From all available alternative renewable energy sources, biomass is the only carbon-based sustainable option. But, its diversity makes it a complex and difficult fuel. Among all technologies used for energy generation from the biomass, fluidized bed combustion is emerging as a suitable best option to handle fuel diversity. This article deals with biomass fluidization and its combustion in a fluidized bed. The difficulties encountered during biomass combustion and different solutions for the same have been highlighted. Problems like deposition, corrosion, agglomeration and trace metal emission have been discussed and their remedies to avoid the discontinuity in the operation of biomass-fired fluidized bed combustor. This technical approach will help to reduce environmental problems, improve the economic structure of the nation, and remove obstacles for sustainable energy development.


Author(s):  
Kangil Choe ◽  
Yangho Lee ◽  
Soongul Lee ◽  
Michael Weedon

Abstract An experimental study presents a new innovative cyclone combustor, known as the three-way swirling combustion (TSC), utilizing non-pulverized wood biomass. The study shows that the combustor reached near-complete combustion, as evident in the measurements of CO and NOx emissions, and the excess air ratio. It also demonstrates the unique features of the TSC combustor, which includes an air curtain insulation effect with a high ash removal rate that reduces clinker and slag formation, alongside a chamber that does not need a refractory brick. It compares against conventional combustion technology, such as the stoker and the fluidized bed in terms of the amount of emission gases, maximum temperature, and excessive air ratio. Six geometrical and operational design criteria of the TSC for wood biomass combustion are identified for future work of design optimization. Ultimately, the implementation of the TSC for non-pulverized wood biomass and possibly for other biomass holds great potential for economically and technically beneficial incineration and power generation.


2018 ◽  
Vol 232 ◽  
pp. 657-684 ◽  
Author(s):  
T. Mendiara ◽  
F. García-Labiano ◽  
A. Abad ◽  
P. Gayán ◽  
L.F. de Diego ◽  
...  

2006 ◽  
Vol 10 (3) ◽  
pp. 93-107 ◽  
Author(s):  
Marcus Johansson ◽  
Tobias Mattisson ◽  
Anders Lyngfelt

Chemical-looping combustion is a combustion technology with inherent separation of the greenhouse gas CO2. This technique involves combustion of fossil fuels by means of an oxygen carrier which transfers oxygen from the air to the fuel. In this manner a decrease in efficiency is avoided for the energy demanding separation of CO2 from the rest of the flue gases. Results from fifty oxygen carriers based on iron-, manganese- and nickel oxides on different inert materials are compared. The particles were prepared using freeze granulation, sintered at different temperatures and sieved to a size 125-180 mm. To simulate the environment the particles would be exposed to in a chemical-looping combustor, reactivity tests under alternating oxidizing and reducing conditions were performed in a laboratory fluidized bed-reactor of quartz. Reduction was performed in 50% CH4/50% H2O while the oxidation was carried out in 5% O2 in nitrogen. In general nickel particles are the most reactive, followed by manganese. Iron particles are harder but have a lower reactivity. An increase in sintering temperatures normally leads to an increase in strength and decrease in reactivity. Several particles investigated display a combination of high reactivity and strength as well as good fluidization behavior, and are feasible for use as oxygen carriers in chemical-looping combustion.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2432 ◽  
Author(s):  
Markewitz ◽  
Zhao ◽  
Ryssel ◽  
Moumin ◽  
Wang ◽  
...  

The share of global CO2 emissions deriving from the cement industry is about 5%. More than 50% of these are process-related and cannot be avoided. This paper addresses the application of CO2 capture technology to the cement industry. Analyses focusing on post-combustion technology for cement plants are carried out on the basis of detailed model calculations. Different heat supply variants for the regeneration of loaded wash solution were investigated. CO2 avoidance costs are in a range of 77 to 115 EUR/tCO2. The achievable CO2 avoidance rate for the investigated cases was determined to be 70% to 90%. CO2 reduction potentials were identified using CCS technology, focusing on the German cement industry as a case study. The results show that adopting carbon capture technology could lead to a significant reduction in CO2 emissions.


GCB Bioenergy ◽  
2011 ◽  
Vol 3 (5) ◽  
pp. 413-426 ◽  
Author(s):  
FRANCESCO CHERUBINI ◽  
GLEN P. PETERS ◽  
TERJE BERNTSEN ◽  
ANDERS H. STRØMMAN ◽  
EDGAR HERTWICH

Author(s):  
Konstantinos G. Kyprianidis ◽  
Tomas Gro¨nstedt ◽  
S. O. T. Ogaji ◽  
P. Pilidis ◽  
R. Singh

Reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, as well as the reduction of engine nacelle drag and weight. Conventional turbofan designs however that reduce CO2 emissions — such as increased OPR designs — can increase the production of NOx emissions. In the present work, funded by the European Framework 6 collaborative project NEWAC, an aero engine multidisciplinary design tool, TERA2020, has been utilised to study the potential benefits from introducing heat-exchanged cores in future turbofan engine designs. The tool comprises of various modules covering a wide range of disciplines: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, as well as production, maintenance and direct operating costs. Fundamental performance differences between heat-exchanged cores and a conventional core are discussed and quantified. Cycle limitations imposed by mechanical considerations, operational limitations and emissions legislation are also discussed. The research work presented in this paper concludes with a full assessment at aircraft system level that reveals the significant potential performance benefits for the inter-cooled and intercooled recuperated cycles. An intercooled core can be designed for a significantly higher OPR and with reduced cooling air requirements, providing a higher thermal efficiency than could otherwise be practically achieved with a conventional core. Variable geometry can be implemented to optimise the use of the intercooler for a given flight mission. An intercooled recuperated core can provide high thermal efficiency at low OPR values and also benefit significantly from the introduction of a variable geometry low pressure turbine. The necessity of introducing novel lean-burn combustion technology, to reduce NOx emissions, at cruise as well as for the landing and take-off cycle, is demonstrated for both heat-exchanged cores and conventional designs. Significant benefits in terms of NOx reduction are predicted from the introduction of a variable geometry low pressure turbine in an intercooled core with lean-burn combustion technology.


2018 ◽  
Vol 7 (2.1) ◽  
pp. 6
Author(s):  
Goli Venkata Siva Naga Sai ◽  
Rajat C Pundlik ◽  
P Venkateswara Rao ◽  
Ganesh R Kale

World depends on fossil fuel combustion for thermal energy generation. Fossil fuel combustion leads to the generation of CO2 and extinction of non-renewable resources. To meet the future energy demands replacement of existing technologies should take place in the view of large quantities of GHG’s emissions from fossil fuels and their extinction. Chemical looping combustion (CLC) is primarily a combustion technique with an inherent separation of CO2 from the flue gases. Due to its advantage of negativeCO2 emissions, chemical looping combustion got attention of many researchers since last one and half decade. Recent research advancements in the CLC provided a platform for further research and developments in chemical looping combustion of biomass. This paper reviewsthe CLC of biomass to present the overview of chemical looping combustion technology and its status of biomass utilization as a fuel in CLC reactors.


Sign in / Sign up

Export Citation Format

Share Document