The Effect of Mixing Prunings of Two Tropical Shrub Legumes (Calliandra Houstoniana and Indigofera zollingeriana) with Contrasting Quality on N Release in the Soil and Apparent N Degradation in the Rumen

2006 ◽  
Vol 280 (1-2) ◽  
pp. 357-368 ◽  
Author(s):  
K. Tscherning ◽  
C. Lascano ◽  
E. Barrios ◽  
R. Schultze-Kraft ◽  
M. Peters
1994 ◽  
Vol 30 (8) ◽  
pp. 235-244 ◽  
Author(s):  
M. Hosomi ◽  
A. Murakami ◽  
R. Sudo

In order to clarify the natural purification potential of a natural wetland having free-flowing water, we performed a four-year study on such a wetland system which had been receiving for 12 years the domestic wastewater discharged from a residential area comprised of 45 households. The wetland's removal rate of organic matter throughout the four years ranged from 80% for COD to 95% for BOD, whereas the corresponding nitrogen removal rate was comparatively lower. Results indicate that NH4-N release from the bottom sediment and repression of nitrification are the main factors responsible for the wetland's low removal rate of nitrogen during winter. The wetland purification performance even in winter was determined as follows (g m−2 d−1): 2.2 BOD, 0.81 COD, 1.1 TOC, 0.10 T-N, and 0.023 T-P.


2021 ◽  
Vol 807 (3) ◽  
pp. 032025
Author(s):  
P I Khaerani ◽  
Y Musa ◽  
R Sjahril ◽  
M Nadir

2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S169-S170
Author(s):  
Angela R Jockheck-Clark ◽  
Cortes Williams ◽  
Christine Kowalczewski ◽  
Jahnabi Roy ◽  
Marc A Thompson ◽  
...  

Abstract Introduction During periods of delayed burn treatment, cells within the eschar leach toxic and immunomodulatory metabolites that can profoundly impact neighboring tissue. Therefore, to reduce the burn-related morbidities and mortalities that are the result of delayed surgical interventions, electrospinning was utilized to generate a novel cerium (III) nitrate (Ce(III)N) dressing. Previously published work has demonstrated that topical Ce(III)N application changes the eschar morphology, and that tissue beneath the treated eschar was generally healthy and had a high rate of graft acceptance. Methods Ce(III)N was dissolved with polyethylene oxide and spun onto a grounded rotating mandrel. The uni-axially spun mesh was compared to a co-axially electrospun dressing that contained a Ce(III)N core. Dressings were evaluated for topography/morphology, porosity and oxygen permeation using scanning electron microscopy, helium pycnometry, and a gas exchange chamber, respectively. Ce(III)N release rates were evaluated, as well as 60-day storage stability. Results All electrospun dressings contained functional Ce(III)N, with the co-axially spun dressing containing three times the amount of Ce(III)N as the traditionally spun dressing. Uni-axially and co-axially spun nanofibers had diameters of 1487±560 nm and 1071±147 nm, and porosities of 83.9% and 74.1%, respectively. Scaffolds released the majority of Ce(III)N within the first hour of wetting. Conclusions All dressings were capable of a burst of Ce(III)N release and maintained stability when stored at room temperature for 60 days. Applicability of Research to Practice Despite advancement in protective equipment worn by military personnel, the incidence of thermal injury is expected to rise in future conflicts. There are no burn wound dressings that can mitigate the pathophysiological processes associated with delayed burn wound treatment.


2008 ◽  
Vol 59 (4) ◽  
pp. 640-652 ◽  
Author(s):  
W. Kaewpradit ◽  
B. Toomsan ◽  
P. Vityakon ◽  
V. Limpinuntana ◽  
P. Saenjan ◽  
...  

Author(s):  
Juliane S. P. Costa ◽  
Rubia D. Mantai ◽  
José A. G. da Silva ◽  
Osmar B. Scremin ◽  
Emilio G. Arenhardt ◽  
...  

ABSTRACT Single or split nitrogen (N) supply can maximize the expression of wheat yield indicators. The objective of the study was to evaluate the greater N use efficiency on wheat yield indicators by the single and split N supply under favorable and unfavorable year conditions to the crop in succession system of high and reduced residual N release. The study was conducted in 2014 and 2015, in a randomized complete block design with four replicates in a 4 x 3 factorial, for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and supply forms [full dose (100%) in the phenological stage V3 (third expanded leaf); split dose (70 and 30%) in the phenological stages V3/V6 (third and sixth expanded leaves, respectively) and; split dose (70 and 30%) in the phenological stages V3/R1 (third expanded leaf and early grain filling)], respectively, in soybean/wheat and maize/wheat cultivation systems. The highest N use efficiency for wheat yield was obtained with the single dose supply in favorable year of temperature and rainfall and with the split dose in the V3/V6 stages in unfavorable year, regardless of the succession system of high and reduced residual N release.


2021 ◽  
Vol 19 (2) ◽  
pp. 49-58
Author(s):  
Azib Ernawati - ◽  
Luki Abdullah ◽  
Idat Galih Permana

This experiment was conducted to evaluate the mineral contents of I. zollingeriana growing with different planting densities. The experiment was conducted in a randomized block design with three different planting densities (8,000 plants per ha, 13,333 plants per ha, and 20,000 plants per ha) and 3 replication. Plant biomass was analyzed for macro and micro mineral contents as well as Ca:P ratio. The results showed that increased planting densities significantly increased (p<0.05) P, Cu, and Cr contents, but decreased Ca and Na contents  had no significant effect  on Mg, K, Mn, Zn and Fe contents. Furthermore, the increased planting densities significantly decreased (p<0.05) uptakes of Ca, K, Mn, and Fe by the plants, but increased (p<0.05) the uptakes of Cu and Cr. Meanwhile, the uptakes of P, K, Na, and Zn were not affected by planting densities. Based on the results of this study, it can be concluded that the planting density of I. zollingeriana should be maintained in 8,000 plants ha-1 to maintain the content and uptake of mineral in forage crops. Key words:        defoliation periods,          Indigofera zollingeriana, macrominerals, micro minerals, planting density


Author(s):  
Kartika Utami ◽  
Eko Hanudin ◽  
Makruf Nurudin

The kinetics of N release during the process of decomposition of organic matter is influenced by organic matter quality, temperature, humidity, and decomposer. Acacia, coffee, salacca, and bamboo leaf litter are native plants and be the pioneer plants on the slopes of Mount Merapi after the eruption in 2010. However, there is a lack of information on the N mineralization process from the leaves litter of acacia, coffee, salacca, and bamboo. The study aimed to determine the kinetics of N release from the litter leaves of acacia (<em>Acacia decurrens</em>), coffee, salacca, and bamboo, which were tested with three approaches, namely zero order, first order, and second order. The experiment was carried out using 10 <em>Phretima californica </em>earthworms that were incubated with 35g of annual plant leaves at 25°C. The levels of NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> were measured at 0, 7, 15, 30, 45, 75, and 105 days after incubation by using the indophenol blue and derivative spectrophotometric method, respectively. Throughout the decomposition 105 days, the release of NO<sub>3</sub><sup>-</sup> was higher than that of NH<sub>4</sub><sup>+</sup> due to the nature of NH<sub>4</sub><sup>+</sup> that was more easily immobilized than NO<sub>3</sub><sup>-</sup>. The highest NO<sub>3</sub><sup>- </sup>release in acacia litter (1.56 mg kg<sup>-1</sup>) occurred 30 days after incubation, while in coffee, salacca, and bamboo occurred 105 days after incubation, reaching 1.92 mg kg<sup>-1</sup>, 2.47 mg kg<sup>-1</sup>, and 1.88 mg kg<sup>-1</sup>, respectively. High N compound on the leaves litter unaffected to increasing total biomass earthworms in the end of incubation however promotes N mineralization rapidly. The kinetics of the second-order equation showed higher compatibility than the other equations to the N release with coefficient determination was higher. The kinetics of mineralization can be a strategy to use the leaves litter of perennial plants as sources of N nutrient input into soil.


Sign in / Sign up

Export Citation Format

Share Document