Exploring regional differences in the impact of high energy-intensive industries on CO2 emissions: Evidence from a panel analysis in China

2019 ◽  
Vol 26 (25) ◽  
pp. 26229-26241 ◽  
Author(s):  
Hanchu Liu ◽  
Jie Fan ◽  
Kan Zhou ◽  
Qiang Wang
2019 ◽  
Vol 80 ◽  
pp. 512-523 ◽  
Author(s):  
Juan Wang ◽  
Mingming Hu ◽  
Arnold Tukker ◽  
João F.D. Rodrigues

2021 ◽  
Vol 13 (15) ◽  
pp. 8304
Author(s):  
Shijie Yang ◽  
Yunjia Wang ◽  
Rongqing Han ◽  
Yong Chang ◽  
Xihua Sun

In recent years, China has overtaken the United States as the world’s largest carbon dioxide (CO2) emitter. CO2 emissions from high-energy-intensive industries account for more than three-quarters of the total industrial carbon dioxide emissions. Therefore, it is important to enhance our understanding of the main factors affecting carbon dioxide emissions in high-energy-intensive industries. In this paper, we firstly explore the main factors affecting CO2 emissions in high-energy-intensive industries, including industrial structure, per capita gross domestic product (GDP), population, technological progress and foreign direct investment. To achieve this, we rely on exploratory regression combined with the threshold criteria. Secondly, a geographically weighted regression model is employed to explore local-spatial heterogeneity, capturing the spatial variations of the regression parameters across the Chinese provinces. The results show that the growth of per capita GDP and population increases CO2 emissions; by contrast, the growth of the services sector’s share in China’s gross domestic product could cause a decrease in CO2 emissions. Effects of technological progress on CO2 emissions in high-energy-intensive industries are negative in 2007 and 2013, whereas the coefficient is positive in 2018. Throughout the study period, regression coefficients of foreign direct investment are positive. This paper provides valuable insights into the relationship between driving factors and CO2 emissions, and also gives provides empirical support for local governments to mitigate CO2 emissions.


Author(s):  
Ying Li ◽  
Yung-ho Chiu ◽  
Yabin Liu ◽  
Tai-Yu Lin ◽  
Tzu-Han Chang

China’s pursuit of economic growth, rapid industrialization, and urbanization over the past few decades has resulted in high energy consumption, which in turn has caused serious environmental pollution problems, such as CO2 and PM2.5 emissions, the long-term exposure to which can seriously affect resident health. To resolve these air pollution problems, the Chinese government has put in place several policies to reduce air and environmental pollution. Past studies on energy and environmental efficiency have been mostly static, have ignored the dynamic changes over time and regional differences, and have rarely considered human health factors. Therefore, this study employed a modified meta 2-stage Epsilon-Based Measure (EBM) Malmquist model to explore the relationships between the economy, energy, the environment, health and media, and the regional differences in 31 Chinese cities from 2014 to 2016. It was found that (1) Haikou and Lhasa’s efficiencies were 1 and were the best in all 3 years, and Shijiazhuang, Jinan and Shenyang’s were the most improved; (2) there was a gap between the eastern, central and western technological frontiers, with Chengdu, Hohhot, Chongqing, and Nanchang having technological gap ratios below 0.70 in the western and central Chinese regions, and Haikou, Guangzhou, and Shanghai in eastern China having technological gap ratios above 0.90 in all 3 years; and (3) the variations in the health treatment stage were greater than in the production stage, indicating that technological changes and efficiency improvements in the health treatment stages in each city were not stable.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4531
Author(s):  
Pedro J. Zarco-Periñán ◽  
Irene M. Zarco-Soto ◽  
Fco. Javier Zarco-Soto ◽  
Rafael Sánchez-Durán

As a result of the increase in city populations, and the high energy consumption and emissions of buildings, cities in general, and buildings in particular, are the focus of attention for public organizations and utilities. Heating is among the largest consumers of energy in buildings. This study examined the influence of the income of inhabitants on the consumption of energy for heating and the CO2 emissions in city buildings. The study was carried out using equivalized disposable income as the basis for the analysis and considered the economies of scale of households. The results are shown per inhabitant and household, by independently considering each city. Furthermore, to more clearly identify the influence of the population income, the study was also carried out without considering the influence of the climate. The method was implemented in the case of Spain. For this purpose, Spanish cities with more than 50,000 inhabitants were analyzed. The results show that, both per inhabitant and per household, the higher the income of the inhabitants, the greater the consumption of energy for heating and the greater the emissions in the city. This research aimed to help energy utilities and policy makers make appropriate decisions, namely, planning for the development of facilities that do not produce greenhouse gases, and enacting laws to achieve sustainable economies, respectively. The overall aim is to achieve the objective of mitigating the impact of emissions and the scarcity of energy resources.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


Stanovnistvo ◽  
1999 ◽  
Vol 37 (1-4) ◽  
pp. 141-161
Author(s):  
Marina Todorovic ◽  
Gordana Vojkovic

The author begins by discussing the relationship between agriculture and population at a theoretical level, proceeds with a historical review of changes in the role and significance of an individual as agricultural producer, and finally, analyzes population as an element (potentials - limitations) of agricultural development in Serbia. The overall production results, and particularly the propensity to technical and technological innovation, as well as the ability to adapt to the changed conditions are, as we know well, crucially dependent on the structure of the working population. Hence, the author discusses regional differences in agricultural population by age, sex, level of education and productivity to provide a clear illustration of the impact of this element (indicator) on the population as the factor of agricultural production. The results show significant macroregional differences by this element with respect to the average for Serbia.


Shock Waves ◽  
2021 ◽  
Author(s):  
C. Garbacz ◽  
W. T. Maier ◽  
J. B. Scoggins ◽  
T. D. Economon ◽  
T. Magin ◽  
...  

AbstractThe present study aims at providing insights into shock wave interference patterns in gas flows when a mixture different than air is considered. High-energy non-equilibrium flows of air and $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 over a double-wedge geometry are studied numerically. The impact of freestream temperature on the non-equilibrium shock interaction patterns is investigated by simulating two different sets of freestream conditions. To this purpose, the SU2 solver has been extended to account for the conservation of chemical species as well as multiple energies and coupled to the Mutation++ library (Multicomponent Thermodynamic And Transport properties for IONized gases in C++) that provides all the necessary thermochemical properties of the mixture and chemical species. An analysis of the shock interference patterns is presented with respect to the existing taxonomy of interactions. A comparison between calorically perfect ideal gas and non-equilibrium simulations confirms that non-equilibrium effects greatly influence the shock interaction patterns. When thermochemical relaxation is considered, a type VI interaction is obtained for the $$\hbox {CO}_2$$ CO 2 -dominated flow, for both freestream temperatures of 300 K and 1000 K; for air, a type V six-shock interaction and a type VI interaction are obtained, respectively. We conclude that the increase in freestream temperature has a large impact on the shock interaction pattern of the air flow, whereas for the $$\hbox {CO}_2$$ CO 2 –$$\hbox {N}_2$$ N 2 flow the pattern does not change.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1128
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Agnė Kairytė

In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.


Sign in / Sign up

Export Citation Format

Share Document