scholarly journals Toward a better understanding of team decision processes: combining laboratory experiments with agent-based modeling

Author(s):  
Iris Lorscheid ◽  
Matthias Meyer

AbstractDespite advances in the field, we still know little about the socio-cognitive processes of team decisions, particularly their emergence from an individual level and transition to a team level. This study investigates team decision processes by using an agent-based model to conceptualize team decisions as an emergent property. It uses a mixed-method research design with a laboratory experiment providing qualitative and quantitative input for the model’s construction, as well as data for an output validation of the model. First, the laboratory experiment generates data about individual and team cognition structures. Then, the agent-based model is used as a computational testbed to contrast several processes of team decision making, representing potential, simplified mechanisms of how a team decision emerges. The increasing overall fit of the simulation and empirical results indicates that the modeled decision processes can at least partly explain the observed team decisions. Overall, we contribute to the current literature by presenting an innovative mixed-method approach that opens and exposes the black box of team decision processes beyond well-known static attributes.

2008 ◽  
pp. 224-238 ◽  
Author(s):  
Hiroshi Takahashi ◽  
Satoru Takahashi ◽  
Takao Terano

This chapter develops an agent-based model to analyze microscopic and macroscopic links between investor behaviors and price fluctuations in a financial market. This analysis focuses on the effects of Passive Investment Strategy in a financial market. From the extensive analyses, we have found that (1) Passive Investment Strategy is valid in a realistic efficient market, however, it could have bad influences such as instability of market and inadequate asset pricing deviations, and (2) under certain assumptions, Passive Investment Strategy and Active Investment Strategy could coexist in a Financial Market.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 627 ◽  
Author(s):  
Camelia Delcea ◽  
Liviu-Adrian Cotfas ◽  
Ioana-Alexandra Bradea ◽  
Marcel-Ioan Boloș ◽  
Gabriella Ferruzzi

As the evacuation problem has attracted and continues to attract a series of researchers due to its high importance both for saving human lives and for reducing the material losses in such situations, the present paper analyses whether the evacuation doors configuration in the case of classrooms and lecture halls matters in reducing the evacuation time. For this aim, eighteen possible doors configurations have been considered along with five possible placements of desks and chairs. The doors configurations have been divided into symmetrical and asymmetrical clusters based on the two doors positions within the room. An agent-based model has been created in NetLogo which allows a fast configuration of the classrooms and lecture halls in terms of size, number of desks and chairs, desks and chair configuration, exits’ size, the presence of fallen objects, type of evacuees and their speed. The model has been used for performing and analyzing various scenarios. Based on these results, it has been observed that, in most cases, the symmetrical doors configurations provide good/optimal results, while only some of the asymmetrical doors configurations provide comparable/better results. The model is configurable and can be used in various scenarios.


2003 ◽  
Vol 06 (03) ◽  
pp. 331-347 ◽  
Author(s):  
YUTAKA I. LEON SUEMATSU ◽  
KEIKI TAKADAMA ◽  
NORBERTO E. NAWA ◽  
KATSUNORI SHIMOHARA ◽  
OSAMU KATAI

Agent-based models (ABMs) have been attracting the attention of researchers in the social sciences, becoming a prominent paradigm in the study of complex social systems. Although a great number of models have been proposed for studying a variety of social phenomena, no general agent design methodology is available. Moreover, it is difficult to validate the accuracy of these models. For this reason, we believe that some guidelines for ABMs design must be devised; therefore, this paper is a first attempt to analyze the levels of ABMs, identify and classify several aspects that should be considered when designing ABMs. Through our analysis, the following implications have been found: (1) there are two levels in designing ABMs: the individual level, related to the design of the agents' internal structure, and the collective level, which concerns the design of the agent society or macro-dynamics of the model; and (2) the mechanisms of these levels strongly affect the outcomes of the models.


Author(s):  
B. Nooteboom

This chapter pleads for more inspiration from human nature in agent-based modeling. As an illustration of an effort in that direction, it summarizes and discusses an agent-based model of the build-up and adaptation of trust between multiple producers and suppliers. The central question is whether, and under what conditions, trust and loyalty are viable in markets. While the model incorporates some well-known behavioral phenomena from the trust literature, more extended modeling of human nature is called for. The chapter explores a line of further research on the basis of notions of mental framing and frame switching on the basis of relational signaling, derived from social psychology.


2020 ◽  
Vol 10 (4) ◽  
pp. 6092-6101
Author(s):  
G. O. Ajisegiri ◽  
F. L. Muller

This paper addresses the application of the Agent-Based Model (ABM) to simulate the evolution of Multiple Input Multiple Output (MIMO) eco-industrial parks to gain insight into their behavior. ABM technique has proven to be an effective tool that can be used to express the evolution of eco-industrial parks. The ABM represents autonomous entities, each with dynamic behavior. The agents within the eco-industrial park are factories, market buyers, and market sellers. The results showed that the Réseau agent-based model allowed the investigation of the behaviors exhibited by different agents in exchange for materials in the industrial park.


Author(s):  
Shu-Heng Chen ◽  
Umberto Gostoli

In this chapter, the authors study the self-coordination problem as demonstrated by the well-known El Farol problem (Arthur, 1994), which has become what is known as the minority game in the econophysics community. While the El Farol problem or the minority game has been studied for almost two decades, existing studies are mostly only concerned with efficiency. The equality issue, however, has been largely neglected. In this chapter, the authors build an agent-based model to study both efficiency and equality and ask whether a decentralized society can ever possibly self-coordinate a result with the highest efficiency while also maintaining the highest degree of equality. The agent-based model shows the possibility of achieving this social optimum. The two key determinants to make this happen are social preferences and social networks. Hence, not only do institutions (networks) matter, but individual characteristics (preferences) also matter. The latter part are open to human-subject experiments for further examination.


2018 ◽  
Author(s):  
S Serena Ding ◽  
Linus J. Schumacher ◽  
Avelino E. Javer ◽  
Robert G. Endres ◽  
André EX Brown

AbstractIn complex biological systems, simple individual-level behavioral rules can give rise to emergent group-level behavior. While such collective behavior has been well studied in cells and larger organisms, the mesoscopic scale is less understood, as it is unclear which sensory inputs and physical processes matter a priori. Here, we investigate collective feeding in the roundworm C. elegans at this intermediate scale, using quantitative phenotyping and agent-based modeling to identify behavioral rules underlying both aggregation and swarming—a dynamic phenotype only observed at longer timescales. Using fluorescent multi-worm tracking, we quantify aggregation behavior in terms of individual dynamics and population-level statistics. Based on our quantification, we use agent-based simulations and approximate Bayesian inference to identify three key behavioral rules that give rise to aggregation: cluster-edge reversals, a density-dependent switch between crawling speeds, and taxis towards neighboring worms. Our simulations suggest that swarming is simply driven by local food depletion but otherwise employs the same behavioral mechanisms as the initial aggregation. Hence, mesoscopic C. elegans uses mechanisms familiar from microscopic systems for aggregation, but implemented via more complex behaviors characteristic of macroscopic organisms.


2014 ◽  
Vol 17 (01) ◽  
pp. 1450004 ◽  
Author(s):  
PIOTR PRZYBYŁA ◽  
KATARZYNA SZNAJD-WERON ◽  
RAFAŁ WERON

In this paper, we modify a two-dimensional variant of a two-state nonlinear voter model and apply it to understand how new ideas, products or behaviors spread throughout the society in time. In particular, we want to find answers to two important questions in the field of diffusion of innovation: Why does the diffusion of innovation take sometimes so long? and Why does it fail so often? Because these kind of questions cannot be answered within classical aggregate diffusion models, like the Bass model, we use an agent-based modeling approach.


Sign in / Sign up

Export Citation Format

Share Document