Promoting effect of licorice extract on spermatogonial proliferation and spermatocytes differentiation of neonatal mice in vitro

2015 ◽  
Vol 52 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Cheng Wang ◽  
Yuji Jin ◽  
Yingji Jin
Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


2020 ◽  
Vol 15 (1) ◽  
pp. 522-531
Author(s):  
Jin-Liang Li ◽  
Zai-Qiu Wang ◽  
Xiao-Li Sun

AbstractObjectiveThis study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma.MethodsProfiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins.ResultsThe data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B.ConclusionIn summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.


2009 ◽  
Vol 23 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Kenichi Miyako ◽  
Laura J. Cobb ◽  
Malik Francis ◽  
Alden Huang ◽  
Bonnie Peng ◽  
...  

Abstract IGF-binding proteins (IGFBPs) have multiple cellular effects, which occur by both IGF-dependent and -independent mechanisms. IGFBP-2 is involved in the regulation of both normal and carcinogenic cell growth. To further understand the actions of IGFBP-2, we carried out a yeast two-hybrid screen to search for intracellular partner proteins using a human prostate cDNA library. We isolated Pim-1-associated protein-1 (PAP-1)-associated protein-1 (PAPA-1) as an IGFBP-2-binding protein, whose expression and subcellular localization is regulated by both IGFBP-2 and androgens. Coimmunoprecipitation and glutathione S-transferase pull-down assay confirmed the interaction in vitro, and confocal microscopy showed the colocalization of IGFBP-2 and PAPA-1 in the nucleus. Suppression of PAPA-1 by small interfering RNA treatment enhanced the growth-promoting effect of IGFBP-2. Conversely, IGFBP-2-promoted bromodeoxyuridine incorporation into LNCaP cells was abrogated by the simultaneous overexpression of myc-hPAPA-1. Mouse embryonic fibroblasts from IGFBP-2 knockout mouse showed diminished growth activity compared with wild type, and expression of FLAG-mPAPA-1 decreased cell proliferation in IGFBP-2 knockout, but not control mouse embryonic fibroblasts. These studies suggest that the growth-promoting role of IGFBP-2 in prostate cancer is inhibited by its intracellular interaction with PAPA-1.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shiue-Wei Lai ◽  
Ming-Yao Chen ◽  
Oluwaseun Adebayo Bamodu ◽  
Ming-Shou Hsieh ◽  
Ting-Yi Huang ◽  
...  

Background. Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. Methods. Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). Results. The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. Conclusion. Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.


2021 ◽  
Vol 24 (1) ◽  
pp. 84-97
Author(s):  
Zohreh Karimi Taheri ◽  
◽  
Mohammad Hosein Aarabi ◽  
Ali Nazari Alam ◽  
Majid Nejati ◽  
...  

Background and Aim: Despite the anti-cancer and antimicrobial properties of licorice extract and lavender essential oil, some factors, such as low bioavailability and biodegradable, limit their therapeutic use. Using nanoparticles is a method to overcome these restrictions. This study aimed to investigate the anti-proliferative effects of nanoemulsion containing licorice extract and lavender essential oil on cancer cells; we also evaluated its antimicrobial properties in vitro. Methods & Materials: In this experimental study, nanoemulsions, containing licorice extract and lavender essential oil were developed by the spontaneous emulsion method. The anti-proliferative effect of nanoemulsion was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric method on two cell lines HepG2 and SK-MEL-3. To measure the antimicrobial effect of 4 standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Minimum Inhibitory Concentration (MIC) method was used. Ethical Considerations: This study was approved by the Ethics Committee of Kashan University of Medical Sciences (Code: IR.KAUMS.MEDNT.REC.1396.106). Results: The results of MTT test on HepG2 cells indicated that the concentrations of 630, 1250, and 2500 μg/mL nanoemulsions caused toxicity to the cell and led to the death of >50% of the cells (IC50=401μg/mL; P<0.05). Evaluating SK-MEL3 cells revealed that except for 75 μg of nanoemulsion, other concentrations induced death in >50% of the cells (IC50 = 82 μg/mL; P<0.05). In addition, nanoemulsions, with antimicrobial properties, were studied in 4 strains of bacteria; the highest antimicrobial properties were observed in Staphylococcus epidermidis. Conclusion: Nanoemulsion containing licorice extract and lavender essential oil presents antimicrobial and antiproliferative effects on the two cell lines studied. The current study results indicated that the nano emulsification of lavender essential oil and licorice extract can enhance their biological impact; thus, they can be used as a drug formulation.


Sign in / Sign up

Export Citation Format

Share Document