3D Visualization of Top Surface Structure and Pores of 3D Printed Ti-6Al-4V Samples Manufactured with TiC Heterogeneous Nucleation Site Particles

2019 ◽  
Vol 51 (3) ◽  
pp. 1345-1352 ◽  
Author(s):  
Yoshimi Watanabe ◽  
Masafumi Sato ◽  
Tadachika Chiba ◽  
Hisashi Sato ◽  
Naoko Sato ◽  
...  
Author(s):  
Guilin Sun ◽  
Bo Song ◽  
Sufen Tao ◽  
Zeyun Cai

AbstractTramp elements in steels such as tin have been thought harmful because of the hot brittleness at grain boundaries and will be enriched in new steels because of difficulty of removal. It has been an important and difficult matter for metallurgist to use these elements. In the present paper, the as-cast steel containing high concentration of tin is prepared in laboratory and tin precipitates at the manganese sulphide inclusions have been found. A theoretical model is established to calculate the size of manganese sulphide inclusions acted as the heterogeneous nucleation site of tin precipitation. The results show that the inclusions with the smaller contact angle between tin precipitate is more advantageous to be the nucleus of tin heterogeneous nucleation. In this experiment, the manganese sulphide inclusions whose size is 2~4 μm in diameter can act as the nuclei of the nucleation of tin precipitation.


2020 ◽  
Vol 321 ◽  
pp. 03023
Author(s):  
Yoshimi Watanabe ◽  
Miwa Hattori ◽  
Tadachika Chiba ◽  
Hisashi Sato

In our previous study, the effects of TiC heterogeneous nucleation site particles on formability and microstructure of additive manufactured (AMed) Ti-6Al-4V products were studied. It was found that the addition of TiC particles decreased the grain size of primary β phase in AMed Ti-6Al-4V samples, since TiC particles act as heterogeneous nucleation sites. It is also found that the density of AMed Ti-6Al-4V samples could be increased by addition of TiC particles. It is expected that solid-state β-grain growth by the high temperature thermal cycles associated with layer-by-layer manufacturing can be suppressed by the pinning effect of TiC heterogeneous nucleation site particles. In this study, the pinning effect of heterogeneous nucleation site particles on microstructure of Ti at elevated temperatures is studied. For this purpose, Ti-0.3vol%TiC samples fabricated by spark plasma sintering (SPS) are used as the model materials, and microstructure and hardness of the samples heat treated at elevated temperatures are studied.


2010 ◽  
Vol 638-642 ◽  
pp. 2787-2792 ◽  
Author(s):  
Kazuhiko Honda ◽  
Kohsaku Ushioda ◽  
Wataru Yamada

The solidification structure of a hot-dip Zn-11%Al-3%Mg-0.2%Si coating with a Ti addition on a steel substrate was investigated. Steel sheet was coated using a laboratory hot-dip galvanizing simulator. The coating was subsequently characterized via optical and high resolution scanning electron microscopy with EBSD and high temperature X-ray diffractometry. The hot-dip coating consisted of a combination of a Zn/Al/MgZn2 ternary eutectic structure, primary Al phase and MgZn2 phase. TiAl3 acts as a heterogeneous nucleation site for Al, which was shown to have perfect lattice coherency with TiAl3 as epitaxial Al growth from the TiAl3 was found. The growth direction of Al is along <110> and has a random texture, whereas Zn has a rather strong ND//<0001> fiber texture.


2020 ◽  
Vol 326 ◽  
pp. 06008
Author(s):  
Yoshimi Watanabe

Al3Ti intermetallic compound with the tetragonal D022 structure undergoes a phase transformation to the high-symmetry L12 cubic structure by addition of third elements, Me. The lattice constants of some L12 modified (Al1−xMex)3Ti intermetallic compounds are closed to that of alpha aluminum. Therefore, it is expected that the addition of L12 modified (Al1−xMex)3Ti intermetallic compound particles show good grain refining performance of cast aluminum. In this paper, our recent results on novel refines containing heterogeneous nucleation site particles of L12 modified (Al1−xMex)3Ti intermetallic compounds have been reviewed.


Author(s):  
Qianren Tian ◽  
Guocheng Wang ◽  
Xinghu Yuan ◽  
Qi Wang ◽  
Seetharaman Sridhar

Nitride and carbide are the second phases which play an important role in the performance of bearing steel, and their precipitation behavior is complicated. In this study, TiN-MCx precipitations in GCr15 bearing steels were obtained by non-aqueous electrolysis, and their precipitation mechanisms were studied. TiN is the effective heterogeneous nucleation site for Fe7C3 and Fe3C, therefore, MCx can precipitate on the surface of TiN easily, its chemistry component consists of M3C and M7C3 (M = Fe, Cr, Mn) and Cr3C2. TiN-MCx with high TiN volume fraction, TiN forms in early stage of solidification, and MCx precipitates on TiN surface after TiN engulfed by the solidification advancing front. TiN-MCx with low TiN volume fraction, TiN and MCx form in late stage of solidification, TiN can not grow sufficiently and is covered by a large number of precipitated MCx particles.


2004 ◽  
Vol 47 (14-16) ◽  
pp. 3097-3107 ◽  
Author(s):  
Yusen Qi ◽  
James F. Klausner ◽  
Renwei Mei

Neurosurgery ◽  
2019 ◽  
Vol 85 (2) ◽  
pp. E343-E349 ◽  
Author(s):  
David Bairamian ◽  
Shinuo Liu ◽  
Behzad Eftekhar

Abstract BACKGROUND Three-dimensional (3D) visualization of the neurovascular structures has helped preoperative surgical planning. 3D printed models and virtual reality (VR) devices are 2 options to improve 3D stereovision and stereoscopic depth perception of cerebrovascular anatomy for aneurysm surgery. OBJECTIVE To investigate and compare the practicality and potential of 3D printed and VR models in a neurosurgical education context. METHODS The VR angiogram was introduced through the development and testing of a VR smartphone app. Ten neurosurgical trainees from Australia and New Zealand participated in a 2-part interactive exercise using 3 3D printed and VR angiogram models followed by a questionnaire about their experience. In a separate exercise to investigate the learning curve effect on VR angiogram application, a qualified neurosurgeon was subjected to 15 exercises involving manipulating VR angiograms models. RESULTS VR angiogram outperformed 3D printed model in terms of resolution. It had statistically significant advantage in ability to zoom, resolution, ease of manipulation, model durability, and educational potential. VR angiogram had a higher questionnaire total score than 3D models. The 3D printed models had a statistically significant advantage in depth perception and ease of manipulation. The results were independent of trainee year level, sequence of the tests, or anatomy. CONCLUSION In selected cases with challenging cerebrovascular anatomy where stereoscopic depth perception is helpful, VR angiogram should be considered as a viable alternative to the 3D printed models for neurosurgical training and preoperative planning. An immersive virtual environment offers excellent resolution and ability to zoom, potentiating it as an untapped educational tool.


2021 ◽  
Vol 11 (8) ◽  
pp. 380
Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane ◽  
Edgars Edelmers

Combining classical educational methods with interactive three-dimensional (3D) visualization technology has great power to support and provide students with a unique opportunity to use them in the study process, training, and/or simulation of different medical procedures in terms of a Human Anatomy course. In 2016, Rīga Stradiņš University (RSU) offered students the 3D Virtual Dissection Table “Anatomage” with possibilities of virtual dissection and digital images at the Department of Morphology. The first 3D models were printed in 2018 and a new printing course was integrated into the Human Anatomy curriculum. This study was focused on the interaction of students with digital images, 3D models, and their combinations. The incorporation and use of digital technologies offered students great tools for their creativity, increased the level of knowledge and skills, and gave them a possibility to study human body structures and to develop relationships between basic and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document