Effect of Al Addition on Structural, Magnetic, and Antimicrobial Properties of Ag Nanoparticles for Biomedical Applications

JOM ◽  
2019 ◽  
Vol 72 (3) ◽  
pp. 1154-1162 ◽  
Author(s):  
Asmaa A. H. El-Bassuony
Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 345
Author(s):  
Daniele Valerini ◽  
Loredana Tammaro ◽  
Roberta Vitali ◽  
Gloria Guillot ◽  
Antonio Rinaldi

Porous scaffolds made of biocompatible and environmental-friendly polymer fibers with diameters in the nano/micro range can find applications in a wide variety of sectors, spanning from the biomedical field to textiles and so on. Their development has received a boost in the last decades thanks to advances in the production methods, such as the electrospinning technique. Conferring antimicrobial properties to these fibrous structures is a primary requirement for many of their applications, but the addition of antimicrobial agents by wet methods can present a series of drawbacks. In this work, strong antibacterial action is successfully provided to electrospun polycaprolactone (PCL) scaffolds by silver (Ag) addition through a simple and flexible way, namely the sputtering deposition of silver onto the PCL fibers. SEM-EDS analyses demonstrate that the polymer fibers get coated by Ag nanoparticles without undergoing any alteration of their morphological integrity upon the deposition process. The influence on wettability is evaluated with polar (water) and non-polar (diiodomethane) liquids, evidencing that this coating method allows preserving the hydrophobic character of the PCL polymer. Excellent antibacterial action (reduction > 99.995% in 4 h) is demonstrated against Escherichia coli. The easy fabrication of these PCL-Ag mats can be applicable to the production of biomedical devices, bioremediation and antifouling systems in filtration, personal protective equipment (PPE), food packaging materials, etc.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Diana Rafael ◽  
Fernanda Andrade ◽  
Francesc Martinez-Trucharte ◽  
Jana Basas ◽  
Joaquín Seras-Franzoso ◽  
...  

Hydrogels (HG) have recognized benefits as drug delivery platforms for biomedical applications. Their high sensitivity to sterilization processes is however one of the greatest challenges regarding their clinical translation. Concerning infection diseases, prevention of post-operatory related infections is crucial to ensure appropriate patient recovery and good clinical outcomes. Silver nanoparticles (AgNPs) have shown good antimicrobial properties but sustained release at the right place is required. Thus, we produced and characterized thermo-sensitive HG based on Pluronic® F127 loaded with AgNPs (HG-AgNPs) and their integrity and functionality after sterilization by dry-heat and autoclave methods were carefully assessed. The quality attributes of HG-AgNPs were seriously affected by dry-heat methods but not by autoclaving methods, which allowed to ensure the required sterility. Also, direct sterilization of the final HG-AgNPs product proved more effective than of the raw material, allowing simpler production procedures in non-sterile conditions. The mechanical properties were assessed in post mortem rat models and the HG-AgNPs were tested for its antimicrobial properties in vitro using extremely drug-resistant (XDR) clinical strains. The produced HG-AgNPs prove to be versatile, easy produced and cost-effective products, with activity against XDR strains and an adequate gelation time and spreadability features and optimal for in situ biomedical applications.


2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3339 ◽  
Author(s):  
Saee Gharpure ◽  
Aman Akash ◽  
Balaprasad Ankamwar

The field of nanotechnology elaborates the synthesis, characterization as well as application of nanomaterials. Applications of nanoparticles in various fields have interested scientists since decades due to its unique properties. Combination of pharmacology with nanotechnology has helped in development of newer antimicrobial agents in order to control the ever increasing multidrug resistant micro-organisms. Properties of metal and metal oxide nanoparticles like silver, gold, titanium dioxide as well as magnesium oxide as antimicrobial agents are very well known. This review elaborates synthesis methods and antimicrobial mechanisms of various metal as well as metal oxide nanoparticles for better understanding in order to utilize their potentials in various biomedical applications.


Author(s):  
Cyril O. Ehi-Eromosele ◽  
J.A.O. Olugbuyiro ◽  
A. Edobor-Osoh ◽  
A.A. Adebisi ◽  
O.A. Bamgboye ◽  
...  

Coating of magnetic nanoparticles (MNPs) is usually a requirement prior to their utilization in biomedical applications. However, coating can influence the magneto-structural properties of MNPs thereby imparting their applications. The present work highlights the combustion synthesis of Na-doped lanthanum manganites (LNMO) and the influence of silica coatings on the magneto-structural properties, colloidal stability and antimicrobial properties of LNMO MNPs with their biomedical applications in mind. The crystalline perovskite structure was the same both for the bare and silica coated LNMO samples while there was a slight increase in crystallite size after coating. The FTIR spectral analysis, reduction in agglomeration of the particles and the elemental composition of the coated nanoparticles confirmed the presence of silica. The magnetization values of 34 emu/g and 29 emu/g recorded for bare and coated LNMO samples, respectively show that LNMO MNPs retained its ferromagnetic behaviour after silica coating. The pH dependent zeta potentials of the coated sample is-22.20 mV at pH 7.4 (physiological pH) and-18 mV at pH 5.0 (cell endosomal pH). Generally, silica coating reduced the antibacterial activity of the sample except forBacillussppwhere the antibacterial activity was the same with the bare sample. These results showed that while silica coating had marginal effect on the crystalline structure, size and magnetization of LNMO MNPs, it reduced the antibacterial activity of LNMO MNPs and enhanced greatly the colloidal stability of LNMO nanoparticles. Keywords: Na-doped lanthanum manganites, Silica coating, magnetic nanoparticles, biomedical applications, antimicrobial properties, colloidal stability


2019 ◽  
Vol 9 (5) ◽  
pp. 4340-4344

In this work silver vanadate (AgVO3) nano-rods were successfully synthesized using chemical precipitation route and doped in hypo (Sn 99%- Bi 1% ) and hyper (Sn 3%- Bi 97% ) -eutectic tin-bismuth (Sn-Bi) alloy. Nanostructured metal alloy was synthesized using powder compact metallurgy technique as a new low cost and time-consuming route. Effects of the AgVO3 nano-rods content on the band structure of (Sn-Bi) alloy has been investigated through electronic transition studied via ATR ultraviolet/visible spectrophotometric and Hall Effect measurements. Antimicrobial studies for pathogenic Gram negative as well as Gram positive bacteria were also investigated and correlated to the analyzed electronic and optical properties. The work a debate avenue for probability controllingthe microbial growth and to correlate electronic properties of (Sn-Bi) alloy along with their antimicrobial properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rohit Rattan ◽  
Sudeep Shukla ◽  
Bharti Sharma ◽  
Mamta Bhat

Biological entities such as green plants, fungi, and lichens are now a days persistently explored for the synthesis of nanoparticles. Lichen-based nanoparticles are also becoming increasingly popular owing to their biocompatibility, eco-friendliness, and cost-effectiveness. The lichen-based metal nanomaterials, particularly synthesized using green chemistry approaches, have turned out to be great substitutes to conventional antimicrobial therapies. Many scientific reports established the significant antimicrobial properties exhibited by the lichen nanoparticles. Therefore, the present mini-review summarizes an overview of lichen-based nanomaterials, their synthesis, their applications, and the molecular mechanism of their potential as broad spectrum antimicrobial agents for biomedical applications.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1758 ◽  
Author(s):  
Daniela Plachá ◽  
Josef Jampilek

Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.


Sign in / Sign up

Export Citation Format

Share Document