scholarly journals The Role and Impact of Minimal Residual Disease in NSCLC

2021 ◽  
Vol 23 (12) ◽  
Author(s):  
Daniele Frisone ◽  
Alex Friedlaender ◽  
Alfredo Addeo

Abstract Purpose of Review There has been a huge development in the assessment of malignancies through liquid biopsies last years, especially for NSCLC, where its use has become part of clinical practice in some settings. We aim to summarize current evidence about minimal residual disease and its use in lung cancer. Recent Findings Recent studies using ctDNA in NSCLC but also in other types of cancer found strong correlations between the presence of ctDNA and the risk of disease progression or death after curative intent, despite current technical difficulties in performing this analysis (high sensitivity and specificity required). Summary Evaluation of MRD in NSCLC, especially through ctDNA, could be an important point in future trial designs and could permit a more “targeted” adjuvant treatment.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3522-3522 ◽  
Author(s):  
Michael J. Overman ◽  
Jean-Nicolas Vauthey ◽  
Thomas A. Aloia ◽  
Claudius Conrad ◽  
Yun Shin Chun ◽  
...  

3522 Background: Preliminary data suggests that ctDNA can serve as a marker of minimal residual disease following colorectal cancer (CRC) tumor resection. Applicability of current ctDNA testing is limited by the requirement of sequencing known individual tumor mutations. We explored the applicability of a multi-gene panel ctDNA detection technology in CRC. Methods: Plasma was prospectively collected from CRC patients (pts) undergoing hepatic resections with curative intent between 1/2013 to 9/2016. In a blinded manner 5ml of preoperative (preop) and immediate post-operative (postop) plasma were tested using a novel 30kb ctDNA digital sequencing panel (Guardant Health) covering SNVs in 21 genes and indels in 9 genes based on the landscape of genomic alterations in ctDNA from over 10,000 advanced cancer pts with a high theoretical sensitivity (96%) for CRC. Median unique molecule coverage for this study is 9000 for cfDNA inputs ranging from 10 – 150 ng (media input preop = 27 ng, median input postop = 49 ng) with 120,000X sequencing depth on an IIlumina HiSeq2500. Results: A total of 54 pts underwent liver metastectomies with curative intent with a median follow-up of 33 months. Preop blood was a median of 49 days from last systemic chemotherapy and 3 days prior to surgery; postop blood was a median of 17 days after resection. Tumor mutations from standard of care hotspot multigene panel testing (at MDACC) were identified in 46 of 54 pts (85%). Preop ctDNA mutation detection rate was 80% (43/54) and 44% (24/54) in postop setting, with postop median allele frequency of 0.16% (range 0.01% to 20%). In pts with a minimum of 1 year follow up, sensitivity of postop ctDNA for residual disease was 58% (95%CI; 41%-74%), and specificity was 100% (66%-100%). In 43 patients who underwent successful resection of all visible disease, postop detection of ctDNA significantly correlated with RFS (P = 0.002, HR 3.1; 95% CI 1.7-9.1) with 2-year RFS of 0% vs. 47%. Recurrence was detected in ctDNA a median of 5.1 months prior to radiographic recurrence. Conclusions: The detection of postop ctDNA using an NGS panel-based approach is feasible and is associated with a very high rate of disease recurrence.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5698
Author(s):  
Lionel Larribère ◽  
Uwe M. Martens

The ability to detect minimal residual disease (MRD) after a curative-intent surgery or treatment is of paramount importance, because it offers the possibility to help guide the clinical decisions related adjuvant therapy. Thus, the earlier MRD is detected, the earlier potentially beneficial treatment can be proposed to patients who might need it. Liquid biopsies, and in particular the next-generation sequencing of circulating tumor DNA (ctDNA) in the blood, have been the focus of an increasing amount of research in the past years. The ctDNA detection at advanced cancer stages is practicable for several solid tumors, and complements molecular information on acquired therapy resistance. In the context of MRD, it is by definition more challenging to detect ctDNA, but it is technically achievable and provides information on treatment response and probability of relapse significantly earlier than standard imaging methods. The clinical benefit of implementing this new technique in the routine is being tested in interventional clinical trials at the moment. We propose here an update of the current use of ctDNA detection by NGS as a tool to assess the presence of MRD and improve adjuvant treatment of solid tumors. We also discuss the main limitations and medium-term perspectives of this process in the clinic.


2019 ◽  
Author(s):  
Khanh Dinh ◽  
Roman Jaksik ◽  
Seth J. Corey ◽  
Marek Kimmel

AbstractEvent-free and overall survival remains poor for acute myeloid leukemia (AML). Chemo-resistant clones contributing to relapse of the disease arise from minimal residual disease (MRD) rather than resulting from newly acquired mutations during or after chemotherapy. MRD is the presence of measurable leukemic cells using non-morphologic assays. It is considered a strong predictor of relapse. The dynamics of clones comprising MRD is poorly understood and is considered influenced by a form of Darwinian selection. We propose a stochastic model based on a multitype (multi-clone) age-dependent Markov branching process to study how random events in MRD contribute to the heterogeneity in response to treatment in a cohort of six patients from The Cancer Genome Atlas database with whole genome sequencing data at two time points. Our model offers a more accurate understanding of how relapse arises and which properties allow a leukemic clone to thrive in the Darwinian competition among leukemic and normal hematopoietic clones. The model suggests a quantitative relationship between MRD and time to relapse and therefore may aid clinicians in determining when and how to implement treatment changes to postpone or prevent the time to relapse.Author summaryRelapse affects about 50% of AML patients who achieved remission after treatment, and the prognosis of relapsed AML is poor. Current evidence has shown that in many patients, mutations giving rise to relapse are already present at diagnosis and remain in small numbers in remission, defined as the minimal residual disease (MRD). We propose a mathematical model to analyze how MRD develops into relapse, and how random events in MRD may affect the patient’s fate. This work may aid clinicians in predicting the range of outcomes of chemotherapy, given mutational data at diagnosis. This can help in choosing treatment strategies that reduce the risk of relapse.


Chemotherapy ◽  
2020 ◽  
pp. 1-5
Author(s):  
Orhan Kemal Yucel ◽  
Mustafa Serkan Alemdar ◽  
Unal Atas ◽  
Levent Undar

Although core-binding factor AML (CBF-AML) has a favorable outcome, disease relapses occur in up to 35% of patients. Minimal residual disease (MRD) monitoring is one of the important tools to enable us to identify patients at high risk of relapse. Real-time quantitative PCR allows MRD to be measured with high sensitivity in CBF-AML. If the patient with CBF-AML is in complete morphologic remission but MRD positive at the end of treatment, what to do for those is still uncertain. Preemptive intervention approaches such as allogeneic hematopoietic stem cell transplantation or intensive chemotherapy could be an option or another strategy might be just follow-up until overt relapse developed. Although using hypomethylating agents as a maintenance therapy has not been widely explored, here, we report a case with CBF-AML who was still positive for MRD after induction/consolidation therapies and whose MRD was eradicated by azacitidine maintenance.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1625-1625
Author(s):  
Anwar Khan ◽  
Nagehan Pakasticali ◽  
Omar Fathalla ◽  
Taiga Nishihori ◽  
Mohammad O Hussaini

Abstract Introduction: Detection of minimal residual disease (MRD) is one of the strongest predictors of outcome in multiple myeloma (MM). Until recently, the most commonly available method to detect MRD in clinical practice has been high sensitivity flow cytometry (FC) which can detect MRD with at 10 -5 sensitivity. In recent years, next-generation sequencing (NGS) has become a viable method to assess the MRD in MM patients with a 10 -6 sensitivity. NGS appears to have some advantages over HC-FC by circumventing subjectivity of analysis. However, real-world comparison between these two methodologies in the literature is limited and is important to inform daily hematopathology and oncology ordering practices. Methods: We retrospectively identified all cases of MM with NGS MRD data from bone marrow specimens at the Moffitt Cancer Center and collated corresponding flow MRD data and clinical data (OS, patient demographics) electronically and via chart review. 10-color flow cytometry was performed on a Gallios System and analyzed on Kaluza (Beckman Coulter, IN). Two million events were collected on all cells. Validated lower limit of detection was at least 0.01%. Antibodies included CD28, CD81, CD56, CD138, CD319, CD20, CD19, CD117, CD38, CD45, CD27, CD200 (BD, Biolegend, Beckman Coulter). clonoSEQ ® (Adaptive Biotechnologies, Seattle, WA) testing was performed which uses multiplex polymerase chain reaction (PCR) and NGS to identify, characterize, and monitor clonotypes of immunoglobulin (Ig) IgH (V-J), IgH (D-J), IgK, and IgL receptor gene sequences, and translocated BCL1/IgH (J) and BCL2/IgH (J) sequences Statistical analysis was performed by Spearman correlation coefficient and Kaplan-Meier analysis. Results: 192 samples from 122 unique patients were identified that had both NGS and FC data performed on the same sample. FC+ values ranged from 1x10 -7 to 0.39. NGS+ values ranged from 2.3 x 10 -7 to 0.15. Spearman correlation coefficient showed moderate concordance between NGS and FC at r=0.67 (p<0.001). Six samples were positive by FC (mean tumor burden (MTB)= 0.0007) but missed by NGS; whereas 59 samples were positive by NGS (MTB= 0.002) but missed by flow cytometry. Two cases by FC were equivocal and these were both definitively designated as MRD+ by NGS. Overall survival was worse for MRD+ (by NGS or FC) vs MRD(-) (Figure 1). Conclusion: Our study confirms the importance of MRD detection in MM and shows the robust utility of NGS for MRD detection in routine hematopathology practice. While both FC and NGS are complementary given that each can potentially detect MRD missed by another method, the data supports the increased sensitivity of NGS over FC. Figure 1 Figure 1. Disclosures Nishihori: Novartis: Research Funding; Karyopharm: Research Funding. Hussaini: Stemeline Therapeutics: Honoraria.


Nanoscale ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 2460-2467 ◽  
Author(s):  
Yujie Wang ◽  
Shenfei Zong ◽  
Na Li ◽  
Zhuyuan Wang ◽  
Baoan Chen ◽  
...  

We report an SERS-based method for dynamic monitoring of minimal residual disease markers with high sensitivity for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document