scholarly journals Rescaling the energy label for washing machines: an opportunity to bring technology development and consumer behaviour closer together

2019 ◽  
Vol 13 (1) ◽  
pp. 51-67 ◽  
Author(s):  
Alicia Boyano ◽  
Nieves Espinosa ◽  
Alejandro Villanueva

Abstract Washing machines have in recent years incorporated programmes that are very energy- and water-efficient, but this entails a long programme duration, often beyond 4 h. These are also the programmes that the manufactures use to define, test and declare the overall water and energy efficiency of the machines. In response to these developments, there is evidence that consumers are reluctant to use excessively lengthy programmes, even if they are aware that the programmes are more energy-efficient. This paper analyses this divergence of programme offer and programme use, which jeopardises the energy efficiency policy objectives for these appliances in the European Union (EU). The paper explores several policy measures to address this divergence, discussed in the context of the revision of the Ecodesign and Energy Labelling regulations that apply to washing machines in the EU. Three different measures are studied: the provision of information about the programme duration on the energy label, the inclusion of time as an intrinsic parameter of the energy efficiency index calculations and the setting of a programme duration cap. The paper concludes that introducing programme duration as an additional parameter of the energy efficiency index would result in the highest energy savings. However, this scenario is associated with significant uncertainties since competition among the manufacturers for a better energy label classification will not solely focus on energy efficiency aspects, and the outcome of such competition is unclear. The other two measures investigated are less effective but would also deliver savings. A programme duration cap would bring energy savings if consumers are aware of their existence and select the now shorter yet energy-efficient programmes more often. The provision of programme duration information on the energy label would also be effective but requires that consumers are able to correctly understand it.

2018 ◽  
pp. 113-119
Author(s):  
Gennady Ya. Vagin ◽  
Eugene B. Solntsev ◽  
Oleg Yu. Malafeev

The article analyses critera applying to the choice of energy efficient high quality light sources and luminaires, which are used in Russian domestic and international practice. It is found that national standards GOST P 54993–2012 and GOST P 54992– 2012 contain outdated criteria for determining indices and classes of energy efficiency of light sources and luminaires. They are taken from the 1998 EU Directive #98/11/EU “Electric lamps”, in which LED light sources and discharge lamps of high intensity were not included. A new Regulation of the European Union #874/2012/EU on energy labelling of electric lamps and luminaires, in which these light sources are taken into consideration, contains a new technique of determining classes of energy efficiency and new, higher classes are added. The article has carried out a comparison of calculations of the energy efficiency classes in accordance with GOST P 54993 and with Regulation #874/2012/EU, and it is found out that a calculation using GOST P 54993 gives underrated energy efficiency classes. This can lead to interdiction of export for certain light sources and luminaires, can discredit Russian domestic manufacturer light sources and does not correspond to the rules of the World Trade Organization (WTO).


2010 ◽  
Vol 107 ◽  
pp. 93-97
Author(s):  
José M. Portela ◽  
Andrés Pastor ◽  
Milagros M. Huerta ◽  
Manuel Otero ◽  
Rafael E. González

Climate change and increasing energy prices threaten the planet and the economy. The European Union has promised to take the lead, through a reduction in greenhouse gases by 20 to 30% and a 20% energy savings by 2020. In this context, the EU is about to ban some of the most inefficient lightbulbs for everyday. Lighting would set the limit at the level of CFLs/LEDs (most energy efficient existing lamps). The energy savings would be maximized, the target is 86 TWh of electricity saved per year in the EU by 2020. To discover how to use different materials in this technology is a high-priority as it shows the advance; maybe this is the future of lighting.


2012 ◽  
Vol 9 (8) ◽  
pp. 829-840 ◽  
Author(s):  
R. Saidur ◽  
M. T. Sambandam ◽  
M. Hasanuzzaman ◽  
D. Devaraj ◽  
S. Rajakarunakaran

1983 ◽  
Vol 105 (4) ◽  
pp. 681-685 ◽  
Author(s):  
F. Freudenstein ◽  
M. Mayourian ◽  
E. R. Maki

The energy loss in cam-follower systems due to friction between moving parts can be a significant contributor to the power loss in machinery. Considering the total number of cam-operated machines in manufacturing and other operations, the energy savings obtainable by improving the efficiency of the average cam-follower system by even a small percentage would be significant. In this investigation a new rating factor—an energy-loss coefficient proportional to the energy loss at the cam-follower interface—has been defined and evaluated. The rating factor relates to energy efficiency in a manner analogous to the way in which the well-known rating factors for velocity, acceleration, and shock relate to the kinematic characteristics of the cam-follower system. Two cam-follower configurations have been considered: 1) a follower motion governed by both cam and return spring, and 2) a follower positively driven by the cam. In both cases it was found that cam curves with identical rise and rise times can differ substantially in energy efficiency thereby demonstrating the significance of an energy-optimization strategy in the design of cam-follower systems. The nature of the functional dependence of the energy loss on system parameters has been identified and a minimum energy-loss limit established.


Author(s):  
Zhendong Liu ◽  
Mats Berg ◽  
Tohmmy Bustad

Improving energy efficiency and reducing CO2 emissions are becoming very essential worldwide. To encourage the development and application of energy-efficient and low-emission technologies and to increase people's awareness of energy-saving, many energy labelling systems are developed and utilized in most countries. Since energy labelling systems have a significant impact, more and more sectors are developing their energy labelling systems to have their products included. Globally, the transport sector consumes a great proportion of energy and is responsible for considerable CO2 emissions. Although rail vehicles have relatively high energy efficiency, a labelling system has not been developed in the railway sector, whereas other modes of transport have developed energy efficiency indicators or energy labelling systems. Therefore, it is necessary to develop an energy labelling system for rail vehicles to promote rail transport and develop the technology of rail vehicles. First, this paper gives a review of the existing energy labelling systems. Second, it summarizes the rail needs and rail stakeholders’ interests regarding energy efficiency and corresponding labelling. Last but not least, a proposal for an energy labelling system for rail vehicles is given.


2014 ◽  
Vol 548-549 ◽  
pp. 1815-1819 ◽  
Author(s):  
Xiao Chun Qin ◽  
She Gang Shao ◽  
Yi Shen

Green lighting technology has the advantages of energy efficiency, friendly environment, safety and comfort. Based on the introduction of green lighting technology, taken the Mt. Lushan West Sea tourist highway service as the case study, we analyzed light guide illumination, the optimum use of natural light and energy efficient lighting respectively from the aspects of technical characteristics and the specific highway service application. We finally made the economic analysis in the energy savings of green lights in the highway service, and the result showed that through the use of green lighting systems Mt. Lushan West Sea tourist highway service could save electricity and reduce operating costs 134,700 Yuan per year.


2012 ◽  
Vol 3 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. Frijns ◽  
R. Middleton ◽  
C. Uijterlinde ◽  
G. Wheale

Energy costs and climate change challenges the water industry to improve their energy efficiency. The number of examples of energy measures in water production and treatment is growing rapidly. In this paper, best practices of energy efficiency from the European water industry are presented with the objective of learning from each other. The best practices are collected within the framework of the Global Water Research Coalition's attempt to devise a global compendium ‘Best practices in the energy efficient design and operation of water industry assets’. The case studies in the compendium show significant energy savings in all parts of the water cycle. Examples with potential include the improved operational set up of pumping design, on line aeration control, and energy-efficient bubble aerators and sludge belt thickeners. Next to optimising energy efficiency across the water cycle, there are also opportunities for energy generation. Promising practices include biogas production from sludge (co)digestion and hydraulic energy generation from micro-turbines.


2018 ◽  
pp. 5-15
Author(s):  
Lyudmila Swistun ◽  
Taina Zavora ◽  
Yuliia Khudolii

The main goal of the study is to analyse the residential real estate market in Ukraine from the point of view of the need and the possibility of increasing its energy efficiency. Also, it aims to justify effective financial and credit mechanisms for ensuring measures to improve the thermal protection properties of residential and non- residential real estate, in particular by introducing energy efficiency development projects. With this research we investigated Ukraine's housing stock and utility tariffs and concluded that a beneficial strategy to be applied in Ukraine is the energy-efficient retrofit of real estate. This is one of the most effective ways to re-profile unclaimed real estate units in the existing state or to reconstruct inefficiently used buildings. Also, we reviewed selected methods of energy efficient residential real estate development and mechanisms of financing energy- efficient renovation of real estate used in the EU. And, in our view, the next step of the Ukraine in the direction of improving the energy efficiency of housing should be the effective operation of a dedicated/specific energy efficiency fund to ensure stable financing of housing modernization projects, which will allow for a comprehensive renovation of buildings and lead to significant annual energy savings in this end-use sector.


Author(s):  
Wente Pan ◽  
Hongyuan Mei

In the past decade, Chinese urban areas have seen rapid development, and rural areas are becoming the next construction hotspot. The development of rural buildings in China has lagged behind urban development, and there is a lack of energy-efficient rural buildings. Rural houses in severe cold regions have the characteristics of large energy exchange, a long heating cycle, and low construction costs. Energy consumption is a crucial issue for rural houses in severe cold regions. How to balance the energy efficiency and building cost become a crucial problem. To solve this problem, we investigate the energy consumption of rural housing in cold regions, using Longquan Village in Heilongjiang Province, northeast China, as a case study. A low-energy design framework is established that considers the spatial layout, building type, enclosure system, and heating system. With the support of project funds, a demonstration house is constructed, and the energy savings performance of the building is investigated during the heating period. The results indicate that the energy savings rate of the demonstration house is 66%. The demonstration building enables local residents to learn construction methods for low-energy houses and promotes energy efficiency.


2017 ◽  
Vol 107 (07-08) ◽  
pp. 513-519
Author(s):  
T. S. Schudeleit ◽  
L. Weiss

In Europa entfällt mehr als ein Drittel des elektrischen Energiebedarfs auf die Industrie. Die Europäische Union strebt eine Regulierung verschiedener industrieller Produktgruppen an, um diesen Anteil zu senken. Dies hat zur Entwicklung der Normenreihe ISO 14955 – Umweltorientierte Bewertung von Werkzeugmaschinen – geführt. Bis heute fehlt allerdings eine Methode, um die Effizienz einer Werkzeugmaschine quantitativ zu bestimmen. Zudem bleibt die Versorgung mit Druckluft, Kühlwasser, Absaugung und Klimatisierung durch die Gebäudetechnik meist unberücksichtigt. Diese Lücken schließen die neuen Forschungsarbeiten.   In Europe, more than a third of electric energy is consumed by industry. The European Union aims to regulate various industrial product groups to reduce this rate. It has also led to the development of the ISO 14955 standard series ‘Environmental evaluation of machine tools‘. A method, however, to determine the efficiency of a machine tool quantitatively is still missing. In addition, the supply of compressed air, cooling water, extraction and air-conditioning by technical building services has generally been disregarded until now. These gaps are filled by recent research work.


Sign in / Sign up

Export Citation Format

Share Document