scholarly journals Effective removal of Pb2+ from oral medical wastewater via an activated three-dimensional framework carbon (3D AFC)

2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Fuxiang Song ◽  
Na Wang ◽  
Zezhou Hu ◽  
Zhen Zhang ◽  
Xiaoxue Mai ◽  
...  

AbstractOral medical wastewater with heavy metal ions (such as plumbum, Pb2+) is regarded as the main pollutant produced in the oral cavity diagnosis, and the treatment process can pose a serious threat to human health. The removal of Pb2+ from oral medical wastewater facing major difficulties and challenges. Therefore, it is of great significance to take effective measures to remove Pb2+ by using effective methods. A new activated three-dimensional framework carbon (3D AFC), regarded as the main material to remove Pb2+ in the oral medical wastewater, has been fabricated successfully. In this experiment, the effects of 3D AFC absorbing Pb2+ under different conditions (including solid-to-liquid ratio, pH, ionic strength, contact time, and initial concentration, etc.) were discussed. And the result revealed that the adsorption kinetics process of Pb2+ on 3D AFC conformed to the pseudo-second-order model and the adsorption isotherm conformed to the Freundlich model. Under the condition that pH = 5.5 and T = 298 k, the calculated maximum adsorption capacity of 3D AFC for Pb2+ was 270.88 mg/g. In practical application, it has strong adsorption ability for Pb2+ in oral medical wastewater. Thus, 3D AFC shows promise for Pb2+ remove and recovery applications because of high adsorption capacity for Pb2+ in oral medical wastewater due to its high specific surface area, outstanding three-dimensional network structure.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3393 ◽  
Author(s):  
Jifu Du ◽  
Zhen Dong ◽  
Zhiyuan Lin ◽  
Xin Yang ◽  
Long Zhao

A quaternized cotton linter fiber (QCLF) based adsorbent for removal of phosphate was prepared by grafting glycidyl methacrylate onto cotton linter and subsequent ring-opening reaction of epoxy groups and further quaternization. The adsorption behavior of the QCLF for phosphate was evaluated in a batch and column experiment. The batch experiment demonstrated that the adsorption process followed pseudo-second-order kinetics with an R2 value of 0.9967, and the Langmuir model with R2 value of 0.9952. The theoretical maximum adsorption capacity reached 152.44 mg/g. The experimental data of the fixed-bed column were well fitted with the Thomas and Yoon–Nelson models, and the adsorption capacity of phosphate at 100 mg/L and flow rate 1 mL/min reached 141.58 mg/g. The saturated QCLF could be regenerated by eluting with 1 M HCl.


2015 ◽  
Vol 72 (7) ◽  
pp. 1217-1225 ◽  
Author(s):  
Fan Zhang ◽  
Shengfu He ◽  
Chen Zhang ◽  
Zhiyuan Peng

Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 167 ◽  
Author(s):  
Yuanli Liu ◽  
Liushuo Song ◽  
Linlin Du ◽  
Peng Gao ◽  
Nuo Liang ◽  
...  

Surface-functionalized polymeric microspheres have wide applications in various areas. Herein, monodisperse poly(styrene–methyl methacrylate–acrylic acid) (PSMA) microspheres were prepared via emulsion polymerization. Polyaniline (PANI) was then coated on the PSMA surface via in situ polymerization, and a three-dimensional (3D) structured reticulate PANI/PSMA composite was, thus, obtained. The adsorption performance of the composite for organic dyes under different circumstances and the adsorption mechanism were studied. The obtained PANI/PSMA composite exhibited a high adsorption rate and adsorption capacity, as well as good adsorption selectivity toward methyl orange (MO). The adsorption process followed pseudo-second-order kinetics and the Langmuir isotherm. The maximum adsorption capacity for MO was 147.93 mg/g. After five cycles of adsorption–desorption, the removal rate remained higher than 90%, which indicated that the adsorbent has great recyclability. The adsorbent materials presented herein would be highly valuable for the removal of organic dyes from wastewater.


2019 ◽  
Vol 25 (6) ◽  
pp. 924-929 ◽  
Author(s):  
Jung-Weon Choi ◽  
Hee Jin Kim ◽  
Hayeon Ryu ◽  
Sanghwa Oh ◽  
Sang-June Choi

Three-dimensional (3D) double-network graphene oxide/alginate-polyacrylonitrile (GO/Ca-Alg2-PAN) composite hydrogels were synthesized via surface functionalization of GO to activate adsorption sites. The morphology and structure of the GO/Ca-Alg2-PAN were analyzed by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA-DSC). The results of the physicochemical analyses indicated that GO/Ca-Alg2-PAN was successfully synthesized by the combination of a 2D-structured graphene oxide with the alginate which was functionalized with the PAN polymer to generate the 3D double network composites. This functionalization approach contributed to an increase in Cu<sup>2+</sup> ion adsorption capacity. The maximum adsorption capacity of the GO/Ca-Alg2-PAN for Cu<sup>2+</sup> was 5.99 mmol/g. The results of adsorption kinetic experiments indicated that the GO/Ca-Alg2-PAN reached adsorption equilibrium within 147 mins at 2 mM Cu<sup>2+</sup> in accordance with a pseudo-second-order model.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Layth Imad Abd Ali ◽  
Wan Aini Wan Ibrahima ◽  
Azli Sulaiman ◽  
Mohd Marsin Sanagi

In the present study, Fe3O4 magnetic nanoparticles (MNPs) synthesized in-housed using co-precipitation method was applied for the treatment of aqueous solutions contaminated by Ni(II) ions. Experimental results indicated that at 25ºC, the optimum pH value for Ni(II) removal was pH 6.0 and an adsorbent dose of 60.0 mg.  The adsorption capacity of Fe3O4 nanoparticles for Ni(II) is 20.54 mg g−1. Adsorption kinetic rates were found to be fast; total equilibrium was achieved after 180 min. Kinetic experimental data fitted very well the pseudo-second order equation and the value of adsorption rate constants was calculated to be 0.004 and 0.0008 g mg−1 min at 5 and 40 mg L−1 initial Ni(II) concentrations, respectively. The equilibrium isotherms were evaluated in terms of maximum adsorption capacity and adsorption affinity by the application of Langmuir and Freundlich equations. The maximum monolayer capacity obtained from the Langmuir isotherm was 24.57 mg g−1 for Ni(II). Results indicate that the Langmuir model fits adsorption isotherm data better than the Freundlich model.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Ting Lei ◽  
Sheng-Jian Li ◽  
Fang Jiang ◽  
Zi-Xuan Ren ◽  
Li-Lian Wang ◽  
...  

Abstract Magnetic nanomaterials were functionalized with dopamine hydrochloride as the functional reagent to afford a core–shell-type Fe3O4 modified with polydopamine (Fe3O4@PDA) composite, which was used for the adsorption of cadmium ions from an aqueous solution. In addition, the effects of environmental factors on the adsorption capacity were investigated. Furthermore, the adsorption kinetics, isotherm, and thermodynamics of the adsorbents were discussed. Results revealed that the adsorption of cadmium by Fe3O4@PDA reaches equilibrium within 120 min, and kinetic fitting data are consistent with the pseudo-second-order kinetics (R2 > 0.999). The adsorption isotherm of Cd2+ on Fe3O4@PDA was in agreement with the Freundlich model, with the maximum adsorption capacity of 21.58 mg/g. The thermodynamic parameters revealed that adsorption is inherently endothermic and spontaneous. Results obtained from the adsorption–desorption cycles revealed that Fe3O4@PDA exhibits ultra-high adsorption stability and reusability. Furthermore, the adsorbents were easily separated from water under an enhanced external magnetic field after adsorption due to the introduction of an iron-based core. Hence, this study demonstrates a promising magnetic nano-adsorbent for the effective removal of cadmium from cadmium-containing wastewater. Graphical Abstract


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jhonatan R. Guarín ◽  
Juan Carlos Moreno-Pirajan ◽  
Liliana Giraldo

Currently, there is a great pollution of water by the dyes; due to this, several studies have been carried out to remove these compounds. However, the total elimination of these pollutants from the aquatic effluents has represented a great challenge for the scientific community, for which it is necessary to carry out investigations that allow the purification of water. In this work, we studied the bioadsorption of methylene blue on the surface of the biomass obtained from the algae D. antarctica. This material was characterized by SEM and FTIR. To the data obtained in the biosorption experiments, different models of biosorption and kinetics were applied, finding that the best fit to the obtained data is given by applying the pseudo-second-order models and the Toth model, respectively. It was also determined that the maximum adsorption capacity of MB on the surface of the biomass is 702.9 mg/g, which shows that this material has great properties as a bioadsorbent.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


SAINTIFIK ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 104-115
Author(s):  
Agusriyadin Agusriyadin

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal. The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.


Sign in / Sign up

Export Citation Format

Share Document