A Aconitum coreanum polysaccharide fraction induces apoptosis of hepatocellular carcinoma (HCC) cells via pituitary tumor transforming gene 1 (PTTG1)-mediated suppression of the P13K/Akt and activation of p38 MAPK signaling pathway and displays antitumor activity in vivo

Tumor Biology ◽  
2015 ◽  
Vol 36 (9) ◽  
pp. 7085-7091 ◽  
Author(s):  
Ming Liang ◽  
Jianchao Liu ◽  
Hongyu Ji ◽  
Moyang Chen ◽  
Yonghua Zhao ◽  
...  
2021 ◽  
Author(s):  
Zhiqiang Han ◽  
Dongming Liu ◽  
Lu Chen ◽  
Yuchao He ◽  
Xiangdong Tian ◽  
...  

Abstract Background Some studies have reported that the activated ribosomes are positively associated with malignant tumors, especially in hepatocellular carcinoma (HCC). The RNA-binding protein PNO1, as a critical ribosome has been rarely reported in human tumors. Thus, the roles of PNO1 in HCC should be explored. Methods We collected 150 formalin-fixed and paraffin-embedded (FFPE) samples and 8 fresh samples to explore the expression and prognosis of PNO1 in HCC by immunohistochemistry, Western Blotting and RT-PCR. Public databases (TCGA and GEO) were used to verify the expression and prognosis. The functions of PNO1 in HCC was verified by in vitro and in vivo experiments. The underlying molecular mechanisms of PNO1 were examined by RNA-seq analysis and a series of functional experiments. Results PNO1 expression was considerably higher in HCC tissues and the higher expression of PNO1 was associated with poor prognosis of HCC patients. In vitro experiments indicated that PNO1 overexpression promoted proliferation and depressed apoptosis of HCC cells. In addition, high expression of PNO1 increased autophagy of HCC cells. Consistent results were also observed in vivo experiments. The results of the RNA-seq analysis indicted that PNO1 as an oncogene promoted HCC progression through the MAPK signaling pathway. The results were also verified by in vivo experiments. Conclusions PNO1 was overexpressed in HCC, promoted autophagy and inhibited apoptosis of HCC cells via the MAPK signaling pathway.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zhiqiang Han ◽  
Dongming Liu ◽  
Lu Chen ◽  
Yuchao He ◽  
Xiangdong Tian ◽  
...  

AbstractSome studies have reported that activated ribosomes are positively associated with malignant tumors, especially in hepatocellular carcinoma (HCC). The RNA-binding protein PNO1 is a critical ribosome rarely reported in human tumors. This study aimed to explore the molecular mechanisms of PNO1 in HCC. Using 150 formalin-fixed and paraffin-embedded samples and 8 fresh samples, we found high PNO1 expression in HCC tumor tissues through Western blotting and RT-PCR. Moreover, the higher PNO1 expression was associated with poor HCC prognosis patients. In vitro and in vivo experiments indicated that PNO1 overexpression promoted the proliferation and depressed the apoptosis of HCC cells. High PNO1 expression also increased the autophagy of HCC cells. The molecular mechanisms underlying PNO1 were examined by RNA-seq analysis and a series of functional experiments. Results showed that PNO1 promoted HCC progression through the MAPK signaling pathway. Therefore, PNO1 was overexpressed in HCC, promoted autophagy, and inhibited the apoptosis of HCC cells through the MAPK signaling pathway.


2019 ◽  
Vol 41 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Kai Zhu ◽  
Yuanfei Peng ◽  
Jinwu Hu ◽  
Hao Zhan ◽  
Liuxiao Yang ◽  
...  

Abstract Accumulating data suggest that metadherin (MTDH) may function as an oncogene. Our previous study showed that MTDH promotes hepatocellular carcinoma (HCC) metastasis via the epithelial-mesenchymal transition. In this study, we aim to further elucidate how MTDH promotes HCC metastasis. Using Co-immunoprecipitation (co-IP) and mass spectrometry, we found that MTDH can specifically bind to protein arginine methyltransferase 5 (PRMT5). Further functional assays revealed that PRMT5 overexpression promoted the proliferation and motility of HCC cells and that knockout of PRMT5 impeded the effect of MTDH. The immunohistochemistry assay/tissue microarray results showed that when MTDH was overexpressed in HCC cells, PRMT5 translocated from the nucleus to the cytoplasm, with the subsequent translocation of β-catenin from the cytoplasm to the nucleus and upregulation of the WNT–β-catenin signaling pathway. Further in vivo experiments suggested that PRMT5 and β-catenin played a pivotal role in MTDH-mediated HCC metastasis. We therefore concluded that the MTDH–PRMT5 complex promotes HCC metastasis by regulating the WNT–β-catenin signaling pathway.


2021 ◽  
Author(s):  
Ying Xu ◽  
Hu Tian ◽  
Chao Guang Luan ◽  
Kai Sun ◽  
peng Jin Bao ◽  
...  

Abstract Background: Hepatocellular carcinoma(HCC) in China is considered as a familiar malignant tumor with poor prognosis, high metastasis and disease relapse. Telocytes(TCs) have been verified to participate in progresses of tumorigenesis, invasions and migrations by secreting functional proteins and transmitting cell-to-cell information. Extracellular signal-regulared protein kinase(ERK) signal pathway is a vital mechanism driving cell proliferation, metastasis and apoptosis, but whether this molecular signaling mechanism contributes to matrix metalloproteinase-9(MMP) expression of TCs remains unclear. Methods: Telocytes and MMP9 expression in the liver cancer tissues are measured by immunohistochemistry assay, Westen blot assay and RT-PCR technique, meanwhile primary telocytes from liver para-cancer tissues are cultured in vitro. To demonstrate the function of telocytes for hepatocellular carcinoma, the metastatic cancer animal model is established by three typs of liver cancer cell-lines in vivo. Results: In our study, we elucidate that TCs in the para-cancer tissue can promote the metastasis of HCC cells by MMP-9 expression, in vitro and in vivo. PDGF derived from HCC cells has a capacity to activate Ras/ERK signaling pathway of TC as a result of accelerating MMP-9 expression, but it’s no significant for proliferative potential and apoptotic rate of TCs. While tyrosine kinase inhibitors and miR-942-3p suppress MMP-9 expression to make loss functions of TCs. Various mutations of TCs are also tested and single nucleotide polymorphisms of MMP-9 may be the potentially molecular mechanism of increasing protein expression in the invasive process of HCC. Conclusion: Our results demonstrate two potential mechanisms between HCC cells and TCs, suggesting that TC is a novel marker and target on deciphering reasons of cancer metastasis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shu-Juan Xie ◽  
Li-Ting Diao ◽  
Nan Cai ◽  
Li-Ting Zhang ◽  
Sha Xiang ◽  
...  

AbstractMALAT1-associated small cytoplasmic RNA (mascRNA) is a cytoplasmic tRNA-like small RNA derived from nucleus-located long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). While MALAT1 was extensively studied and was found to function in multiple cellular processes, including tumorigenesis and tumor progression, the role of mascRNA was largely unknown. Here we show that mascRNA is upregulated in multiple cancer cell lines and hepatocellular carcinoma (HCC) clinical samples. Using HCC cells as model, we found that mascRNA and its parent lncRNA MALAT1 can both promote cell proliferation, migration, and invasion in vitro. Correspondingly, both of them can enhance the tumor growth in mice subcutaneous tumor model and can promote metastasis by tail intravenous injection of HCC cells. Furthermore, we revealed that mascRNA and MALAT1 can both activate ERK/MAPK signaling pathway, which regulates metastasis-related genes and may contribute to the aggressive phenotype of HCC cells. Our results indicate a coordination in function and mechanism of mascRNA and MALAT1 during development and progress of HCC, and provide a paradigm for deciphering tRNA-like structures and their parent transcripts in mammalian cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cancan Zheng ◽  
Yidong Zhu ◽  
Qinwen Liu ◽  
Tingting Luo ◽  
Wenwen Xu

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death and has a poor prognosis worldwide, thus, more effective drugs are urgently needed. In this article, a small molecule drug library composed of 1,056 approved medicines from the FDA was used to screen for anticancer drugs. The tetracyclic compound maprotiline, a highly selective noradrenergic reuptake blocker, has strong antidepressant efficacy. However, the anticancer effect of maprotiline remains unclear. Here, we investigated the anticancer potential of maprotiline in the HCC cell lines Huh7 and HepG2. We found that maprotiline not only significantly restrained cell proliferation, colony formation and metastasis in vitro but also exerted antitumor effects in vivo. In addition to the antitumor effect alone, maprotiline could also enhance the sensitivity of HCC cells to sorafenib. The depth studies revealed that maprotiline substantially decreased the phosphorylation of sterol regulatory element-binding protein 2 (SREBP2) through the ERK signaling pathway, which resulted in decreased cholesterol biosynthesis and eventually impeded HCC cell growth. Furthermore, we identified cellular retinoic acid binding protein 1 (CRABP1) as a direct target of maprotiline. In conclusion, our study provided the first evidence showing that maprotiline could attenuate cholesterol biosynthesis to inhibit the proliferation and metastasis of HCC cells through the ERK-SREBP2 signaling pathway by directly binding to CRABP1, which supports the strategy of repurposing maprotiline in the treatment of HCC.


Author(s):  
Shuhua Zhang ◽  
Fan Zhang ◽  
Qing Chen ◽  
Chidan Wan ◽  
Jun Xiong ◽  
...  

Abstract Background The NSD family of histone lysine methyltransferases have emerged as important biomarkers that participate in a variety of malignancies. Recent evidence has indicated that somatic dysregulation of the nuclear receptor binding SET domain-containing protein 1 (NSD1) is associated with the tumorigenesis in HCC, suggesting that NSD1 may serve as a prognostic target for this malignant tumor. However, its mechanism in human hepatocellular carcinoma (HCC), the major primary malignant tumor in the human liver, remains unclear. Hence, we investigated how NSD1 regulated HCC progression via regulation of the Wnt/β-catenin signaling pathway. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis was performed to identify the expression of NSD1 in HCC cells and clinically obtained tissues. The relationship between NSD1 expression and prognosis was analyzed by Kaplan-Meier survival curve. Further, a NSD1 knockout cell line was constructed by CRISPR/Cas9 genomic editing system, which was investigated in a battery of assays such as HCC cell proliferation, migration and invasion, followed by the investigation into NSD1 regulation on histone H3, Wnt10b and Wnt/β-catenin signaling pathway via ChIP. Finally, a nude mouse xenograft model was conducted in order to assess tumorigenesis affected by NSD1 knockout in vivo. Results NSD1 was overexpressed in HCC tissues and cell lines in association with poor prognosis. Knockout of NSD1 inhibited the proliferation, migration and invasion abilities of HCC cells. CRISPR/Cas9-mediated knockout of NSD1 promoted methylation of H3K27me3 and reduced methylation of H3K36me2, which inhibited Wnt10b expression. The results thereby indicated an inactivation of the Wnt/β-catenin signaling pathway suppressed cell proliferation, migration and invasion in HCC. Moreover, these in vitro findings were reproduced in vivo on tumor xenograft in nude mice. Conclusion In conclusion, the study provides evidence that CRISPR/Cas9-mediated NSD1 knockout suppresses HCC cell proliferation and migration via the NSD1/H3/Wnt10b signaling pathway, suggesting that NSD1, H3 and Wnt10b may serve as potential targets for HCC.


2018 ◽  
Vol 19 (10) ◽  
pp. 3060 ◽  
Author(s):  
Gan Qiao ◽  
Huanli Xu ◽  
Cong Li ◽  
Xiao Li ◽  
Ammad Farooqi ◽  
...  

Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, due to resistance and toxicity, the application of cisplatin for the treatment of hepatocellular carcinoma (HCC) is limited. Our previous study has shown that granulin A (GRN A), an anticancer peptide, is able to interact with enolase1 (ENO1) and inhibit the growth of HCC in vitro. In the present study, we studied the synergistic effect of the combination of cisplatin and GRN A for the inhibitory effect on HCC. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and Chou-Talalay approaches revealed that the combination of GRN A and cisplatin displayed potent synergistic effect. The colony formation and cell viability of HCC cells were inhibited significantly in cells treated with the combination of cisplatin and GRN A, compared with cells treated with cisplatin or GRN A alone. Overexpression of ENO1 diminished the synergistic effect of GRN A and cisplatin in HCC cells. The combination of the two drugs exhibited a more obvious inhibitory effect on cancer cell apoptosis, as analyzed by the cytometry flow, mitochondrial membrane potential (MMP) and western blot analysis. An in vivo study confirmed that the combined use of the two drugs displayed more potent antitumor activity compared to mice treated with cisplatin and GRN A alone; the inhibitory rate of tumor growth was 65.46% and 68.94%, respectively, in mice treated with GRN A and cisplatin. However, the inhibitory rate increased to 86.63% in mice treated with the combination of the two drugs. This study provides evidence that the combination of GRN A and cisplatin is able to sensitize the liver cancer to cisplatin, and that targeting ENO1 is a promising approach for enhancing the antitumor activity of cisplatin.


2021 ◽  
Author(s):  
Lin Liu ◽  
Shukui Qin ◽  
Zhengcao Liu ◽  
Yinghui Zheng ◽  
Li Han ◽  
...  

Abstract Background We previously found that (via inhibition of the VEGF/VEGFR signaling pathway) ckgroundSevacizumab (Sev), an anti-VEGF monoclonal antibody, was proven to have a superior inhibitory effect than bevacizumab (Bev) on the growth of hepatocellular carcinoma (HCC) cells. This study aimed to explore the anti-proliferation and anti-angiogenic effects of Sev on HCC cells in combination with oxaliplatin (OXA) or 5-fluorouracil (5-Fu). Methods In vitro HCC/endothelial cell growth in different concentration drug was analyzed by MTT assay, DAPI and flow cytometry assay. Cell scratch test, transwell assay, tube formation assay, zebrafish assay, and CAM assay were used to investigate anti-angiogenesis effect of drugs. VEGF mRNA relative expression changes of zebrafish embryos were detected by RT-PCR.A fluorescence imaging system was applied to observe the growth of transplantation tumor and blood vessels in HCC mouse xenografts. Tissue H-E staining and TEM detection were used to detect the tumor cell apoptosis. MVD was detected by immunohistochemical analysis of CD31. ELISA and western-blots were used to detect the cell VEGF/VEGFR pathway and its downstream target activity both in vitro and in vivo. Results In vitro results showed that the combination of Sev with OXA/5-Fu can synergistically inhibit the proliferation of HCC and endothelial cells. Compared with the corresponding monotherapy group, combination therapy showed a stronger effect on inducing apoptosis and cell cycle arrest. In vivo findings revealed that Sev in combination with chemotherapy can synergistically inhibit tumor growth by inducing cell apoptosis in nude mice with HCC xenografts. In addition, the wound healing and transwell migration assays demonstrated that Sev can inhibit the migration of endothelial cell lines in combination with chemotherapy. In vitro tube formation test, zebrafish and chicken embryonic-angiogenic assay, immunohistochemistry, and in vivo fluorescence imaging consistently verified that Sev and OXA/5-Fu can synergistically inhibit the growth of blood vessels, and the underlying mechanism may be associated with inhibition of the VEGF/VEGFR signaling pathway. Conclusions The combination of Sev and chemotherapy is associated with the inhibition of HCC growth and tumor angiogenesis, which may provide a significant biological rationale for evaluating the efficacy of Sev and OXA/5-Fu combination therapy on HCC.


2021 ◽  
Author(s):  
Peiyi Xie ◽  
Yanglin Chen ◽  
Hongfei Zhang ◽  
Guichao Zhou ◽  
Qing Chao ◽  
...  

Abstract Background: OTUD3, a deubiquitinating enzyme, has emerged as important role in some cancer. It showed that OTUD3 plays suppressive role in breast cancer whereas oncogenic role in lung cancer. However, the function and mechanism of OTUD3 in hepatocellular carcinoma (HCC) progression remain elusive. Methods: Gene and protein expression of OTUD3 in HCC tissues were determined by qRT-PCR, western blot and immunohistochemistry. A series of gain- and loss-of-function assays were used to investigated the role of OTUD3 in HCC cells progression. Moreover, mass spectroscopic analysis and RNA-seq were used to identify the downstream targets of OTUD3 in HCC cells. The interaction between OTUD3 and ACTN4 was examined through co-IP experiment and in vitro ubiquitination assay.Results: In our research, OTUD3 was significantly overexpressed in HCC tissues and higher OTUD3 expression was correlated with bigger tumor size, more distant metastasis, and worse TNM stage. Additionally, OTUD3 promoted HCC cells growth and metastasis in vitro and in vivo. Furthermore, ACTN4 was identified as a downstream target of OTUD3 and ACTN4 protein level was significantly related to OTUD3 expression. Rescue experiments indicated that ACTN4 was essential for OTUD3-mediated HCC proliferation and metastasis in vitro and in vivo. Moreover, we identified that NF-κB signaling pathway was activated by OTUD3 through ACTN4 to promote HCC cells progression. Importantly, OTUD3 protein level was correlated with ACTN4 protein level and activity of NF-κB signaling pathway in HCC tissues. Conclusion: Our findings identify the oncogenic role of OTUD3 in HCC and suggest that OTUD3 can be considered as a pivotal prognostic biomarker and a potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document