Mixture of guava leaves extract and Citrus hassaku pericarp extract inhibits in vitro inflammatory biomarkers by blocking ERK, JNK, and p38 MAPK signaling and protects mice from lethal endotoxemia

2014 ◽  
Vol 15 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jong Hyun Lee ◽  
Hyun Min Park ◽  
Dongwoo Nam ◽  
Won-Seok Chung ◽  
Bum Sang Shim ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Qiang Li ◽  
Guangli Du ◽  
Guofeng Meng ◽  
Jijia Sun ◽  
...  

Background: Guizhi has the pharmacological activity of anti-inflammatory. However, the effect mechanism of Guizhi against nephrotic syndrome (NS) remains unclear. A network pharmacological approach with experimental verification in vitro and in vivo was performed to investigate the potential mechanisms of Guizhi to treat NS.Methods: Active compounds and potential targets of Guizhi, as well as the related targets of NS were obtained from the public databases. The intersecting targets of Guizhi and NS were obtained through Venny 2.1.0. The key targets and signaling pathways were determined by protein-protein interaction (PPI), genes ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. And the overall network was constructed with Cytoscape. Molecular docking verification was carried out by AutoDock Vina. Finally, in vitro and in vivo experiments were performed to verify the mechanism of Guizhi to treat NS.Results: 63 intersecting targets were obtained, and the top five key targets mainly involed in NF- Kappa B and MAPK signaling pathway. In the overall network, cinnamaldehyde (CA) was the top one active compound with the highest degree value. The molecular docking showed that the top five key targets were of good binding activity with the active components of Guizhi. To in vitro experiment, CA, the main active component of Guizhi, inhibited the secretion of IL-1β, IL-6, TNF-α in LPS challenged RAW264.7 cells, and down regulated the protein expression of p-NF-κB p65 and p-p38 MAPK in LPS challenged RAW264.7 cells. In vitro experiment showed that, 24 urinary protein and renal function were increased in ADR group. To western blot, CA down regulated the protein expression of p-p38 MAPK in rats of adriamycin-induced nephropathy.Conclusion: CA might be the main active component of Guizhi to treat NS, and the underlying mechanism might mainly be achieved by inhibiting MAPK signaling pathway.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Feng He ◽  
Zonghui Xiao ◽  
Hailan Yao ◽  
Sen Li ◽  
Miao Feng ◽  
...  

Abstract Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2553-2553
Author(s):  
Pier P. Scaglioni ◽  
Thomas Yung ◽  
Lu F. Cai ◽  
Pier Paolo Pandolfi

Abstract The promyelocytic leukemia gene (PML) is involved in the t(15;17) chromosomal translocation of acute promyelocytic leukemia (APL). PML is a tumor suppressor whose inactivation is causal in leukemogenesis. PML exerts its function by interacting with several tumor suppressor proteins such as p53, pRb, Smad2, Smad3 and CBP/p300. We have recently demonstrated that PML protein is frequently lost in a large portion of hematologic and solid tumors. In these tumors, PML gene sequence and RNA expression were wild type. These findings suggest that PML protein loss is mediated by a post-translational mechanism. We investigated whether PML protein loss is due to degradation via the ubiquitin/proteasome system. Several tumor cell lines have absent or reduced levels of PML protein when compared to untransformed primary cells. We found that in these cases, PML protein half-life is reduced as a result of increased protein degradation. In addition, PML ubiquitinylation is markedly increased in tumor derived cell lines. Incubation of PML negative tumor cell lines with proteasome inhibitors restored wild type PML protein levels. We also defined the minimal PML sequence that is required for ubiquitinylation. This region is in the immediate proximity to p38 mitogen-activated protein kinase consensus sites (p38 MAPK). The p38 MAPK kinase responds to cellular stress, such as osmotic shock, increased free radicals and hypoxia. Notably, p38 MAPK activation has been associated with poor prognosis in breast cancer and follicular lymphoma (Esteva et al. Cancer, 2003. Elenitoba-Johnson et al. Proc Natl Acad Sci U S A. 2003). We therefore, tested whether PML and p38 MAPK functionally interact. Activation of p38 MAPK signaling resulted in dramatic PML degradation due to increased ubiquitinylation. Furthermore, activation of P38 MAPK resulted in increased PML phosphorylation and sumoylation. Treatment with specific inhibitors of p38 MAPK or expression of a p38 dominant negative mutant also inhibited p38 induced PML degradation. In addition, we demonstrated that PML is a direct target of p38 MAPK activity. Bacterially expressed PML is a direct substrate of p38 MAPK in an in vitro kinase assay. The p38 MAPK phosphorylation sites present in the PML protein were mapped. Alanine to serine substitutions of predicted p38 MAPK sites abolished PML phosphorylation by p38 MAPK in vitro and abrogated p38 MAPK dependent PML degradation within the cell. In addition, co-immunoprecipitation experiments clearly demonstrated that PML binds to the active form of p38 MAPK. Confocal immunofluorescence analysis revealed that both activated p38 MAPK colocalize with PML in the nuclear body. These data indicate that the p38 MAPK signaling pathway results in ubiquitin/proteasome mediated PML degradation and imply that MAPK signaling pathways may contribute to oncogenesis by inducing the degradation of the PML tumor suppressor protein. Pharmacological manipulation of this pathway may prove useful for the treatment of tumors that lose PML protein.


2017 ◽  
Vol 46 (29) ◽  
pp. 9481-9490 ◽  
Author(s):  
Zhao Zhang ◽  
Hua-Hua Wang ◽  
Hua-Jun Yu ◽  
Yu-Zhen Xiong ◽  
Hai-Tao Zhang ◽  
...  

A gallium(iii) tris(ethoxycarbonyl)corrole is a highly effective photosensitizer against A549 cancer cells via p38 MAPK signaling cascade pathways.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhao-Na Li ◽  
Ming-Xu Ge ◽  
Zhong-Fang Yuan

Abstract Background MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear. Methods The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2′,7′-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis. Results We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p. Conclusions We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.


2020 ◽  
Vol 4 (s1) ◽  
pp. 7-8
Author(s):  
Carlos Jesus Perez Kerkvliet ◽  
Amy R Dwyer ◽  
Caroline Diep ◽  
Robert Oakley ◽  
Christopher Liddle ◽  
...  

OBJECTIVES/GOALS: The glucocorticoid receptor (GR) is a ubiquitous steroid hormone receptor that is emerging as a mediator of breast cancer metastasis. We aim to better understand the biology associated with phospho-GR species in TNBC and their contribution to tumor progression. METHODS/STUDY POPULATION: To better understand how p-S134 GR may impact TNBC cell biology, we probed GR regulation by soluble factors that are rich within the tumor microenvironment (TME), such as TGFβ. TNBC cells harboring endogenous wild-type or S134A-GR species were created by CRISPR/Cas knock-in and subjected to in vitro assays of advanced cancer behavior. RNA-Seq was employed to identify pS134-GR target genes that are uniquely regulated by TGFβ in the absence of exogenously added GR ligands. Direct regulation of selected TGFβ-induced pS134-GR target genes was validated accordingly. Bioinformatics tools were used to probe publicly available TNBC patient data sets for expression of a pS134-GR 24-gene signature. RESULTS/ANTICIPATED RESULTS: In the absence of GR ligands, GR is transcriptionally activated via p38-MAPK-dependent phosphorylation of Ser134 upon exposure of TNBC cells to TME-derived agents (TGFβ, HGF). The ligand-independent pS134-GR transcriptome primarily encompasses gene sets associated with TNBC cell survival and migration/invasion. Accordingly, pS134-GR was essential for TGFβ-induced TNBC cell migration, anchorage-independent growth in soft-agar, and tumorsphere formation, an in vitro readout of breast cancer stemness properties. Finally, a 24-gene pSer134-GR-dependent signature induced by TGFβ1 predicts shortened survival in breast cancer. We expect to find similar results using an in-house tissue microarray. DISCUSSION/SIGNIFICANCE OF IMPACT: Phospho-S134-GR is a critical downstream mediator of p38 MAPK signaling and TNBC migration, survival, and stemness properties. Our studies define GR as a required effector of TGFβ1 signaling and nominate pS134-GR as a biomarker of elevated risk of breast cancer dissemination.


MAP Kinase ◽  
2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Li Xing

The trigger and etiology of chronic inflammatory diseases are not well understood, hindering the development of efficient therapeutic approaches. The observation that abnormal activity of the p38 MAPK is common to all inflammatory diseases raised the expectation that p38 inhibitors would serve as general anti-inflammatory therapeutics. A large number of inhibitors were consequently discovered. Several compounds of different scaffolds, blocking the p38 MAPK signaling pathway, have entered phase II clinical trials for rheumatoid arthritis, chronic obstructive pulmonary disease, pain, cardiovascular diseases, and cancer. As I review here, in almost all cases the clinical trials have failed, leading to re-design of compounds and re-evaluation of p38 as a suitable target. I describe how structural features, unique to p38<span>α</span>, have been employed in the inhibitor design and achieved high degree of kinome selectivity. I then focus on some of the drugs that reached human trials and summarize their <em>in vitro/in vivo</em> pharmacological profiles and the related outcomes from clinical investigations. These compounds include VX-745, VX-702, RO-4402257, SCIO- 469, BIRB-796, SD-0006, PH-797804, AMG-548, LY2228820, SB-681323 and GW-856553. Finally, I discuss novel suggested approaches for the use of p38 inhibitors such as combining p38 inhibition with inhibiting other targets that function in parallel inflammatory pathways for achieving efficacy in treating inflammatory diseases.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yuan Chen ◽  
Kangquan Shou ◽  
Chunlong Gong ◽  
Huarui Yang ◽  
Yi Yang ◽  
...  

It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway.In vitro, geniposide attenuated the expression of inflammatory cytokines including interleukin-1 (IL-1), tumor necrosis factor (TNF-α), and nitric oxide (NO) production as well as matrix metalloproteinase- (MMP-) 13 in chondrocytes isolated from surgically induced rabbit osteoarthritis model. Additionally, geniposide markedly suppressed the expression of IL-1, TNF-α, NO, and MMP-13 in the synovial fluid from the rabbits with osteoarthritis. More importantly, our results clearly demonstrated that the inhibitory effect of geniposide on surgery-induced expression of inflammatory mediators in osteoarthritis was closely associated with the suppression of the p38 MAPK signaling pathways. Our study demonstrates that geniposide may have therapeutic potential to serve as an alternative agent for the p38 MAPK inhibition for the treatment of OA due to its inherent features of biological activities and low toxicity as a traditional Chinese medicine.


2020 ◽  
Author(s):  
Zhao-Na Li ◽  
Ming-Xu Ge ◽  
Zhong-Fang Yuan

Abstract Background: MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear.Methods: The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2',7'-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis.Results: We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p.Conclusions: We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.


Sign in / Sign up

Export Citation Format

Share Document