scholarly journals The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Feng He ◽  
Zonghui Xiao ◽  
Hailan Yao ◽  
Sen Li ◽  
Miao Feng ◽  
...  

Abstract Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.

2021 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Qiang Li ◽  
Guangli Du ◽  
Guofeng Meng ◽  
Jijia Sun ◽  
...  

Background: Guizhi has the pharmacological activity of anti-inflammatory. However, the effect mechanism of Guizhi against nephrotic syndrome (NS) remains unclear. A network pharmacological approach with experimental verification in vitro and in vivo was performed to investigate the potential mechanisms of Guizhi to treat NS.Methods: Active compounds and potential targets of Guizhi, as well as the related targets of NS were obtained from the public databases. The intersecting targets of Guizhi and NS were obtained through Venny 2.1.0. The key targets and signaling pathways were determined by protein-protein interaction (PPI), genes ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. And the overall network was constructed with Cytoscape. Molecular docking verification was carried out by AutoDock Vina. Finally, in vitro and in vivo experiments were performed to verify the mechanism of Guizhi to treat NS.Results: 63 intersecting targets were obtained, and the top five key targets mainly involed in NF- Kappa B and MAPK signaling pathway. In the overall network, cinnamaldehyde (CA) was the top one active compound with the highest degree value. The molecular docking showed that the top five key targets were of good binding activity with the active components of Guizhi. To in vitro experiment, CA, the main active component of Guizhi, inhibited the secretion of IL-1β, IL-6, TNF-α in LPS challenged RAW264.7 cells, and down regulated the protein expression of p-NF-κB p65 and p-p38 MAPK in LPS challenged RAW264.7 cells. In vitro experiment showed that, 24 urinary protein and renal function were increased in ADR group. To western blot, CA down regulated the protein expression of p-p38 MAPK in rats of adriamycin-induced nephropathy.Conclusion: CA might be the main active component of Guizhi to treat NS, and the underlying mechanism might mainly be achieved by inhibiting MAPK signaling pathway.


1998 ◽  
Vol 18 (10) ◽  
pp. 5670-5677 ◽  
Author(s):  
Ossama Abu Hatoum ◽  
Shlomit Gross-Mesilaty ◽  
Kristin Breitschopf ◽  
Aviad Hoffman ◽  
Hedva Gonen ◽  
...  

ABSTRACT MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.


2018 ◽  
Vol 47 (3) ◽  
pp. 1152-1166 ◽  
Author(s):  
Guang-Yang Yu ◽  
Xuan Wang ◽  
Su-Su Zheng ◽  
Xiao-Mei Gao ◽  
Qing-An Jia ◽  
...  

Background/Aims: Effective drug treatment for intrahepatic cholangiocarcinoma (ICC) is currently lacking. Therefore, there is an urgent need for new targets and new drugs that can prolong patient survival. Recently targeting the ubiquitin proteasome pathway has become an attractive anti-cancer strategy. In this study, we aimed to evaluate the therapeutic effect of and identify the potential mechanisms involved in targeting the proteasome subunit ADRM1 for ICC. Methods: The expression of ADRM1 and its prognostic value in ICC was analyzed using GEO and TCGA datasets, tumor tissues, and tumor tissue arrays. The effects of RA190 on the proliferation and survival of both established ICC cell lines and primary ICC cells were examined in vitro. Annexin V/propidium iodide staining, western blotting and immunohistochemical staining were performed. The in vivo anti-tumor effect of RA190 on ICC was validated in subcutaneous xenograft and patient-derived xenograft (PDX) models. Results: ADRM1 levels were significantly higher in ICC tissues than in normal bile duct tissues. ICC patients with high ADRM1 levels had worse overall survival (hazard ratio [HR] = 2.383, 95% confidence interval [CI] =1.357 to 4.188) and recurrence-free survival (HR = 1.710, 95% CI =1.045 to 2.796). ADRM1 knockdown significantly inhibited ICC growth in vitro and in vivo. The specific inhibitor RA190 targeting ADRM1 suppressed proliferation and reduced cell vitality of ICC cell lines and primary ICC cells significantly in vitro. Furthermore, RA190 significantly inhibited the proteasome by inactivating ADRM1, and the consequent accumulation of ADRM1 substrates decreased the activating levels of NF-κB to aggravate cell apoptosis. The therapeutic benefits of RA190 treatment were further demonstrated in both subcutaneous implantation and PDX models. Conclusions: Our findings indicate that up-regulated ADRM1 was involved in ICC progression and suggest the potential clinical application of ADRM1 inhibitors (e.g., RA190 and KDT-11) for ICC treatment.


2017 ◽  
Vol 46 (29) ◽  
pp. 9481-9490 ◽  
Author(s):  
Zhao Zhang ◽  
Hua-Hua Wang ◽  
Hua-Jun Yu ◽  
Yu-Zhen Xiong ◽  
Hai-Tao Zhang ◽  
...  

A gallium(iii) tris(ethoxycarbonyl)corrole is a highly effective photosensitizer against A549 cancer cells via p38 MAPK signaling cascade pathways.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Yang ◽  
Lili Ding ◽  
Qi Zhou ◽  
Li Fen ◽  
Yuhua Cao ◽  
...  

Abstract Background Aurora kinase A (AURKA) has been implicated in the regulation of cell cycle progression, mitosis and a key number of oncogenic signaling pathways in various malignancies including neuroblastoma. Small molecule inhibitors of AURKA have shown potential, but still not as good as expected effects in clinical trials. Little is known about this underlying mechanism. Here, we evaluated the inhibitory effects of AURKA inhibitor MLN8237 on neuroblastoma cells to understand the potential mechanisms responsible for tumor therapy. Methods MLN8237 treatment on neuroblastoma cell line IMR32 was done and in vivo inhibitory effects were investigated using tumor xenograft model. Cellular senescence was evaluated by senescence-associated β-gal Staining assay. Flow cytometry was used to tested cell cycle arrest and cell apoptosis. Senescence-associated signal pathways were detected by western blot. CD133 microbeads and microsphere formation were used to separate and enrich CD133+ cells. AURKA small interfering RNA transfection was carried to downregulate AURKA level. Finally, the combination of MLN8237 treatment with AURKA small interfering RNA transfection were adopted to evaluate the inhibitory effect on neuroblastoma cells. Results We demonstrate that MLN8237, an inhibitor of AURKA, induces the neuroblastoma cell line IMR32 into cellular senescence and G2/M cell phase arrest. Inactivation of AURKA results in MYCN destabilization and inhibits cell growth in vitro and in a mouse model. Although MLN8237 inhibits AURKA kinase activity, it has almost no inhibitory effect on the AURKA protein level. By contrast, MLN8237 treatment leads to abnormal high expression of AURKA in vitro and in vivo. Knockdown of AURKA reduces cell survival. The combination of MLN8237 with AURKA small interfering RNA results in more profound inhibitory effects on neuroblastoma cell growth. Moreover, MLN8237 treatment followed by AURKA siRNA forces senescent cells into apoptosis via suppression of the Akt/Stat3 pathway. Conclusions The effect of AURKA-targeted inhibition of tumor growth plays roles in both the inactivation of AURKA activity and the decrease in the AURKA protein expression level.


MAP Kinase ◽  
2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Li Xing

The trigger and etiology of chronic inflammatory diseases are not well understood, hindering the development of efficient therapeutic approaches. The observation that abnormal activity of the p38 MAPK is common to all inflammatory diseases raised the expectation that p38 inhibitors would serve as general anti-inflammatory therapeutics. A large number of inhibitors were consequently discovered. Several compounds of different scaffolds, blocking the p38 MAPK signaling pathway, have entered phase II clinical trials for rheumatoid arthritis, chronic obstructive pulmonary disease, pain, cardiovascular diseases, and cancer. As I review here, in almost all cases the clinical trials have failed, leading to re-design of compounds and re-evaluation of p38 as a suitable target. I describe how structural features, unique to p38<span>α</span>, have been employed in the inhibitor design and achieved high degree of kinome selectivity. I then focus on some of the drugs that reached human trials and summarize their <em>in vitro/in vivo</em> pharmacological profiles and the related outcomes from clinical investigations. These compounds include VX-745, VX-702, RO-4402257, SCIO- 469, BIRB-796, SD-0006, PH-797804, AMG-548, LY2228820, SB-681323 and GW-856553. Finally, I discuss novel suggested approaches for the use of p38 inhibitors such as combining p38 inhibition with inhibiting other targets that function in parallel inflammatory pathways for achieving efficacy in treating inflammatory diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuman Wang ◽  
Aihua Wang ◽  
Yu Zhang ◽  
Kejing Zhu ◽  
Xiong Wang ◽  
...  

Abstract Background Prolactinoma is a functional pituitary adenoma that secretes excessive prolactin. Dopamine agonists (DAs) such as bromocriptine (BRC) are the first-line treatment for prolactinomas, but the resistance rate is increasing year by year, creating a clinical challenge. Therefore, it is urgent to explore the molecular mechanism of bromocriptine resistance in prolactinomas. Activation of the P38 MAPK pathway affects multidrug resistance in tumours. Our previous studies have demonstrated that inhibiting MAPK14 can suppress the occurrence of prolactinoma, but the role of MAPK11/12/13/14 (p38 MAPK) signalling in dopamine agonist-resistant prolactinomas is still unclear. Methods A prolactinoma rat model was established to determine the effect of bromocriptine on MAPK11/12/13/14 signalling. DA-resistant GH3 cells and DA-sensitive MMQ cells were used, and the role of MAPK11/12/13/14 in bromocriptine-resistant prolactinomas was preliminarily verified by western blot, RT-qPCR, ELISA, flow cytometry and CCK-8 experiments. The effects of MAPK11 or MAPK14 on bromocriptine-resistant prolactinomas were further verified by siRNA transfection experiments. Results Bromocriptine was used to treat rat prolactinoma by upregulating DRD2 expression and downregulating the expression level of MAPK11/12/13/14 in vivo experiments. The in vitro experiments showed that GH3 cells are resistant to bromocriptine and that MMQ cells are sensitive to bromocriptine. Bromocriptine could significantly reduce the expression of MAPK12 and MAPK13 in GH3 cells and MMQ cells. Bromocriptine could significantly reduce the expression of MAPK11, MAPK14, NF-κB p65 and Bcl2 in MMQ but had no effect on MAPK11, MAPK14, NF-κB p65 and Bcl2 in GH3 cells. In addition, knockdown of MAPK11 and MAPK14 in GH3 cells by siRNA transfection reversed the resistance of GH3 cells to bromocriptine, and haloperidol (HAL) blocked the inhibitory effect of bromocriptine on MAPK14, MAPK11, and PRL in MMQ cells. Our findings show that MAPK11 and MAPK14 proteins are involved in bromocriptine resistance in prolactinomas. Conclusion Bromocriptine reduces the expression of MAPK11/12/13/14 in prolactinomas, and MAPK11 and MAPK14 are involved in bromocriptine resistance in prolactinomas by regulating apoptosis. Reducing the expression of MAPK11 or MAPK14 can reverse bromocriptine resistance in prolactinomas.


2021 ◽  
Vol 11 ◽  
Author(s):  
Minjie Zhang ◽  
Jiaxi Qu ◽  
Zhiwei Gao ◽  
Qi Qi ◽  
Hong Yin ◽  
...  

Timosaponin AIII (TAIII), a steroidal saponin, exerts potent anti-tumor activity in various cancers, especially breast cancer. However, the concrete molecular mechanisms of TAIII against breast cancer are still unclear. Here, we find that TAIII triggers DNA damage, leads to G2/M arrest, and ultimately induces apoptosis in breast cancer both in vitro and in vivo. TAIII induced G2/M phase arrest and apoptosis in MDA-MB-231 and MCF7 cells accompanied with down-regulation of CyclinB1, Cdc2 and Cdc25C. Further data showed that the ATM/Chk2 and p38 pathways were activated representing by up-regulated levels of p-H2A.X and p-p38, which indicated an induction of DNA damage by TAIII, leading to cell cycle arrest and apoptosis. The effects of TAIII were further confirmed by employing inhibitors of ATM and p38 pathways. In vivo, TAIII suppressed the growth of subcutaneous xenograft tumor without obvious toxicity, which indicated by Ki67 and TUNEL analysis. Data also showed that TAIII stimulated the ATM/Chk2 and p38 MAPK pathways in vivo, which in consistent with the effects in vitro. Hence, our data demonstrate that TAIII triggers DNA damage and activates ATM/Chk2 and p38 MAPK pathways, and then induces G2/M phase arrest and apoptosis in breast cancer, which provide theoretical evidence for TAIII utilized as drug against breast cancer.


2020 ◽  
Author(s):  
Yang Xu ◽  
Qian Sun ◽  
Fan’en Yuan ◽  
Huimin Dong ◽  
Huikai Zhang ◽  
...  

Abstract Background: Inhibition of p38 MAPK signalling leads to glioblastoma multiform (GBM) tumourigenesis. Nevertheless, the molecular mechanism that induces p38 MAPK signalling pathway silencing during GBM genesis has yet to be determined. Identifying new factors that can regulate p38 MAPK signalling is important for tumour treatment. Methods: Flow cytometry, TUNEL assays, immunofluorescence, JC-1 assays, and western blot analyses were used to detect the apoptosis of GBM cells. The specific methods used to detect autophagy levels in GBM cells were western blot analysis, LC3B protein immunofluorescence, LC3B puncta assays and transmission electron microscopy. The functions of these critical molecules were further confirmed in vivo by intracranial xenografts in nude mice. Tumour tissue samples and clinical information were used to identify the correlation between RND2 and p62 and LC3B expression, survival time of patients, and tumour volumes in clinical patients. Results: By summarizing data from the TCGA database, we found that expression of the small GTPase RND2 was significantly increased in human glioblastomas. Our study demonstrated that RND2 functions as an endogenous repressor of the p38 MAPK phosphorylation complex. RND2 physically interacted with p38 and decreased p38 phosphorylation, thereby inhibiting p38 MAPK signalling activities.The forced expression of RND2 repressed p38 MAPK signalling, which inhibited glioblastoma cell autophagy and apoptosis in vitro and induced tumour growth in the xenografted mice in vivo . By contrast, the downregulation of RND2 enhanced p38 MAPK signalling activities and promoted glioma cell autophagy and apoptosis. The inhibition of p38 phosphorylation abolished RND2 deficiency-mediated GBM cell autophagy and apoptosis. Most importantly, our study found that RND2 expression was inversely correlated with patient survival time and was positively correlated with tumour size. Conclusions: Our findings revealed a new function for RND2 in GBM cell death and offered mechanistic insights into the inhibitory effects of RND2 with regard to the regulation of p38 MAPK activation.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bin Leng ◽  
Cong Li ◽  
Yang Sun ◽  
Kun Zhao ◽  
Ling Zhang ◽  
...  

Vascular endothelial dysfunction is associated with increased mortality in patients with diabetes. Astragaloside IV (As-IV) is a bioactive saponin with therapeutic potential as an anti-inflammatory and antiendothelial dysfunction. However, the underlying mechanism for how As-IV ameliorated endothelial dysfunction is still unclear. Therefore, in this study, we examined the protective effect of As-IV against endothelial dysfunction and explored potential molecular biology mechanism. In vivo, rats were intraperitoneally injected with streptozotocin (STZ) at a dose of 65 mg/kg body weight to establish a diabetic model. In vitro studies, rat aortic endothelial cells (RAOEC) were pretreated with As-IV, SB203580 (p38 MAPK inhibitor) for 2 h prior to the addition of high glucose (33 mM glucose). Our findings indicated that As-IV improved impaired endothelium-dependent relaxation and increased the levels of endothelial NO synthase (eNOS) and nitric oxide (NO) both in vivo and in vitro. Besides, As-IV treatment inhibited the elevated inflammation and oxidative stress in diabetic model both in vivo and in vitro. Moreover, As-IV administration reversed the upregulated expression of P2X7R and p-p38 MAPK in vivo and in vitro. Additionally, the effects of both P2X7R siRNA and SB203580 on endothelial cells were similar to As-IV. Collectively, our study demonstrated that As-IV rescued endothelial dysfunction induced by high glucose via inhibition of P2X7R dependent p38 MAPK signaling pathway. This provides a theoretical basis for the further study of the vascular endothelial protective effects of As-IV.


Sign in / Sign up

Export Citation Format

Share Document