scholarly journals Microstructures, mechanical properties, and grease-lubricated sliding wear behavior of Cu-15Ni-8Sn-0.8Nb alloy with high strength and toughness

Friction ◽  
2020 ◽  
Author(s):  
Jinjuan Cheng ◽  
Mincong Mao ◽  
Xueping Gan ◽  
Qian Lei ◽  
Zhou Li ◽  
...  

Abstract Alloys used as bearings in aircraft landing gear are required to reduce friction and wear as well as improve the load-carrying capability due to the increased aircraft weights. Cu-15Ni-8Sn-0.8Nb alloy is well known for possessing good mechanical and wear properties that satisfy such requirements. In this study, the microstructure, mechanical properties, and grease-lubricated sliding wear behavior of Cu-15Ni-8Sn-0.8Nb alloy with 0.8 wt% Nb are investigated. The nanoscale NbNi3 and NbNi2Sn compounds can strengthen the alloy through the Orowan strengthening mechanism. A Stribeck-like curve is plotted to illustrate the relationship among friction coefficient, normal load, and sliding velocity and to analyze the grease-lubricated mechanism. The wear rate increases with normal load and decreases with sliding velocity, except at 2.58 m/s. A wear mechanism map has been developed to exhibit the dominant wear mechanisms under various friction conditions. When the normal load is 700 N and the sliding velocity is 2.58 m/s, a chemical reaction between the lubricating grease and friction pairs occurs, resulting in the failure of lubricating grease and an increase in wear.

2013 ◽  
Vol 6 (2) ◽  
pp. 139-153
Author(s):  
Israa .A.K

This research is devoted to study the effect of addition of different weight percent from SiCp ( 2, 4, 6, 8 ) to Al– 4 Cu alloy which have been fabricated by liquid metallurgy method on the dry sliding wear behavior and mechanical properties. Wear characteristics of Al–SiC composites have been investigated under dry sliding conditions and compared with base alloy. Dry sliding wear tests have been carried out using pin-on-disk wear test under normal applied loads 5, 10, 15 and 20 N and at different sliding velocity of (2.7, 3.7, 4.7) m/sec. It was also observed that the wear rate varies linearly with increases normal applied load but lower in composites as compared to the base material. The wear mechanism appears to be oxidative for both Al – Cu alloy and composites under the given conditions of load and sliding velocity as indicated by optical microscopic of the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight percent of silicon carbide. The best results have been obtained at 8 % wt SiC . We also observed that the yield strength, tensile strength increases with increasing wt% of SiC , but the ductility decreases.


Author(s):  
Debabrata Panda ◽  
Krunal M Gangawane

Polymer-based composites have been widely used in the enhanced tribological technologies of various automobile, aerospace industry, sports, etc. The epoxy-based polymer composites reinforced with glass fiber have significantly improved the wear inhibitors and ultimate strength along with ultra-low density than other available materials. This current research aims to fabricate a variation of such non-woven viscose-based polymer composites for various weight fractions (100–400 GSM) with a constant fiber loading of 30 wt% and subsequently analyze its physical, mechanical, and tribological properties under various operating parameters. The density of the fabricated composite exhibits an increase of magnitude with an increase in weight fraction. The composites consist of 400 GSM fabric showing a higher tensile, impact, flexural strength, hardness, and inter lamina shear strength (ILSS). A pin-on-disc wear set-up held dry sliding wear tests of various nonwoven viscose fabric-based composites under various operating parameters like sliding velocity, sliding distance, area density, and normal load. A Taguchi-based L16 orthogonal array design was utilized to estimate the optimal behavior for maximum wear resistance for operating conditions. The result reveals that the normal load over the composite contributes the highest towards wear on a composite compared to area density, sliding velocity, and distance. The wear phenomena have been verified with SEM micrographs to characterize various wear phenomena like fiber rapture, ploughing, micro-cracks, and wear lines.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1005 ◽  
Author(s):  
Dong-Hui Wang ◽  
Sheng-Hui Xie ◽  
Hai-Peng Yang ◽  
Hai-Xia Qian ◽  
Xie-Rong Zeng

In bearing applications, the development of new materials has become a focus of scientific research in order to make bearing systems smaller and rotate more accurately. Bulk metallic glass (BMG), which has high strength, stiffness and resistance to corrosion, is becoming a promising candidate for bearing and shaft materials. When used as shafts, the friction feature of BMG needs to be evaluated comprehensively. In this work, the friction and wear properties of Ni-based, Zr-based, and Cu-based BMGs sliding against brass lubricated with lithium grease were investigated, using traditional bearing materials (GCr15 steel) as comparison. The results showed that the wear mechanism of the BMGs was primarily abrasive, supplemented by an adhesive wear behavior when sliding against brass plates, just like GCr15 steel. The wear loss of the friction pair (brass plates) increases when the applied normal load increases and the sliding speed decreases. Compared with GCr15 steel, BMGs exhibit better friction performance at low sliding speed, and Ni-based BMG always exhibits a smaller wear loss, especially under large load and low sliding speed. The wear loss of brass plates against Ni-based BMG pin is 24.3% lower than that against GCr15 steel under an applied load of 10 kg, which indicates that Ni-based BMG is an attractive bearing and shaft material for industrial application.


Author(s):  
Sandeep Kumar Khatkar ◽  
Rajeev Verma ◽  
Suman Kant ◽  
Narendra Mohan Suri

This article statistically investigates the effect of various parameters such as material factors: silicon carbide (SiC) reinforcement, graphite (Gr) reinforcement and mechanical factors: normal load, sliding distance and speed on the sliding wear rate of vacuum stir cast self-lubricating AZ91D-SiC-Gr hybrid magnesium composites. The sliding wear tests have been performed on pin-on-disc tribometer at 10-50N loads, 1-3m/s sliding speed and 1000-2000m sliding distance. It has been examined that hybrid composites yielded improved wear resistance with reinforcement of SiC and solid lubricant graphite. ANOVA and signal-to-noise ratio investigation indicated that applied load was the most critical factor influencing the wear rate, followed by sliding distance. Further, the AZ91D/5SiC/5Gr hybrid composite has exhibited the best wear properties. From the SEM and EDS analysis of worn surfaces, delamination was confirmed as the dominant wear mechanism for AZ91D-SiC-Gr hybrid composites.


Author(s):  
Tej Singh ◽  
Gusztáv Fekete

Brake friction composite materials comprising varying proportions of natural (banana) and inorganic (lapinus) fibers were designed, fabricated by compression molding, and characterized for sliding wear performance. The sliding wear properties of the manufactured friction composites have been studied by the Taguchi method. An orthogonal array (L 16) was used to investigate the influence of sliding wear parameters. A series of tests were conducted on a pin-on-disc machine by considering four control parameters: composition, normal load, sliding velocity, and sliding distance, each having four levels. The results showed that the wear in terms of weight loss decreases with increasing banana fiber and increases with increasing lapinus fiber, normal load, sliding velocity, and sliding distance. The results indicate that the normal load emerges as the most significant control parameter affecting wear performance, followed by sliding distance and sliding velocity.


Lubricants ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Abdulaziz Kurdi ◽  
Li Chang

High-performance polymer (HPP)-based engineering materials in tribological applications have been under continuous research over the last few decades. This paper reviewed the recent studies on the sliding wear properties of HPPs and their nanocomposites, which are associated with the intrinsic and extrinsic parameters. In particular, the effects of the intrinsic properties of polymer composites (e.g., mechanical properties of the materials and the types of fillers) and external environmental conditions (e.g., service temperature and lubrication medium) on the formation of transfer layers (TLs) were discussed. The latter would govern the overall friction and wear of polymeric materials in sliding against metallic counterparts. In addition, correlations between the basic mechanical properties of HPPs and their sliding wear behavior were also explored.


2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


2016 ◽  
Vol 254 ◽  
pp. 231-236 ◽  
Author(s):  
Ion Dragoş Uţu ◽  
Gabriela Marginean ◽  
Iosif Hulka ◽  
Viorel Aurel Şerban

Microstructure and wear properties of the Al2O3-13.wt% TiO2 thermally sprayed coatings before and after remelting were investigated in this study. The coatings were deposited on a pure titanium substrate using the atmospheric plasma spraying (APS) process. The as-sprayed coatings were electron beam (EB) modified in order to improve their compactness and bonding strength.The effect of EB remelting on the microstructure, phase constituents and wear properties was investigated using scanning electron microscopy (SEM), X-Ray diffraction technique and hardness measurements. The sliding wear behavior was tested using a pin on disk method.The results showed that the remelting process had a positive effect removing the lamellar defect of the as-sprayed coating and improving the compactness, hardness and wear behavior.


2021 ◽  
Author(s):  
Gamri Hamza ◽  
Allaoui Omar ◽  
Zidelmel Sami

Abstract The effect of the morphology and the martensite volume fraction on the microhardness, the tensile, the friction and the wear behavior of API X52 dual phase (DP) steel has been investigated. Three different heat treatments were used to develop dual phase steel with different morphologies and with different amounts of martensite: Intermediate Quenching Treatment/Water (IQ); Step Quenching Treatment (SQ) and direct quenching (DQ). Tribological tests are conducted on DP steels using a ball-on-disc configuration under normal load of 5 N and at a sliding speed of 4 cm/s were used to study the friction and wear behavior of treated samples. Results show that the ferrite–martensite morphology has a great influence on the mechanical properties of dual phase steel. The steel subjected to (IQ) treatment attain superior mechanical properties compared to the SQ and the DQ treatments. On the other hand, it is also found that the friction coefficient and the wear rate (volume loss) decrease when the hardness and the martensite volume fraction increase. The steel with fine fibrous martensite provide good wear resistance.


Sign in / Sign up

Export Citation Format

Share Document