scholarly journals Correction to: Vermiculite-Lizardite Industrial Wastes Promote Plant Growth in a Peat Soil Affected by a Cu/Ni Smelter: a Case Study at the Kola Peninsula, Russia

2020 ◽  
Vol 20 (3) ◽  
pp. 1588-1588
Author(s):  
Ekaterina Tarasova ◽  
Svetlana Drogobuzhskaya ◽  
Felipe Tapia-Pizarro ◽  
Dmitry V. Morev ◽  
Vasyl A. Brykov ◽  
...  
2020 ◽  
Vol 20 (3) ◽  
pp. 1013-1018
Author(s):  
Ekaterina Tarasova ◽  
Svetlana Drogobuzhskaya ◽  
Felipe Tapia-Pizarro ◽  
Dmitry V. Morev ◽  
Vasyl A. Brykov ◽  
...  

2019 ◽  
Vol 81 (4) ◽  
pp. 256-268
Author(s):  
Yamina Pressler ◽  
Mary Hunter-Laszlo ◽  
Sarah Bucko ◽  
Beth A. Covitt ◽  
Sarah Urban ◽  
...  

We designed two NGSS-aligned middle school classroom experiments to investigate the effects of biochar on plant growth and soil respiration. Biochar is a carbon-rich material, produced by heating organic matter under limited oxygen, that is added to soils to improve fertility, to promote plant growth, and as one possible strategy to help mitigate climate change. The experiments offer an ideal case study for students learning fundamentals of soil and plant interactions. Soils and biochar are accessible, are connected to global issues such as agriculture and climate change, and are the focus of ongoing research in soil science. These classroom experiments promote authentic science because students design replicated experiments, collect and analyze data, discuss variability in the data, and interpret their results in the context of recent research.


GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 425-431
Author(s):  
Subin Thomas ◽  
Dr. M. Nandhini

Biofertilizers are fertilizers containing microorganisms that promote plant growth by improving the supply of nutrients to the host plant. The supply of nutrients is improved naturally by nitrogen fixation and solubilizing phosphorus. The living microorganisms in biofertilizers help in building organic matter in the soil and restoring the natural nutrient cycle. Biofertilizers can be grouped into Nitrogen-fixing biofertilizers, Phosphorous-solubilizing biofertilizers, Phosphorous-mobilizing biofertilizers, Biofertilizers for micro nutrients and Plant growth promoting rhizobacteria. This study conducted in Kottayam district was intended to identify the awareness and acceptance of biofertilizers among the farmers of the area. Data have been collected from 120 farmers by direct interviews with structured questionnaire.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3411
Author(s):  
Clara Fernando-Foncillas ◽  
Maria M. Estevez ◽  
Hinrich Uellendahl ◽  
Cristiano Varrone

Wastewater and sewage sludge contain organic matter that can be valorized through conversion into energy and/or green chemicals. Moreover, resource recovery from these wastes has become the new focus of wastewater management, to develop more sustainable processes in a circular economy approach. The aim of this review was to analyze current sewage sludge management systems in Scandinavia with respect to resource recovery, in combination with other organic wastes. As anaerobic digestion (AD) was found to be the common sludge treatment approach in Scandinavia, different available organic municipal and industrial wastes were identified and compared, to evaluate the potential for expanding the resource recovery by anaerobic co-digestion. Additionally, a full-scale case study of co-digestion, as strategy for optimization of the anaerobic digestion treatment, was presented for each country, together with advanced biorefinery approaches to wastewater treatment and resource recovery.


2021 ◽  
Vol 9 (4) ◽  
pp. 809
Author(s):  
Hiroya Yurimoto ◽  
Kosuke Shiraishi ◽  
Yasuyoshi Sakai

Methanol is abundant in the phyllosphere, the surface of the above-ground parts of plants, and its concentration oscillates diurnally. The phyllosphere is one of the major habitats for a group of microorganisms, the so-called methylotrophs, that utilize one-carbon (C1) compounds, such as methanol and methane, as their sole source of carbon and energy. Among phyllospheric microorganisms, methanol-utilizing methylotrophic bacteria, known as pink-pigmented facultative methylotrophs (PPFMs), are the dominant colonizers of the phyllosphere, and some of them have recently been shown to have the ability to promote plant growth and increase crop yield. In addition to PPFMs, methanol-utilizing yeasts can proliferate and survive in the phyllosphere by using unique molecular and cellular mechanisms to adapt to the stressful phyllosphere environment. This review describes our current understanding of the physiology of methylotrophic bacteria and yeasts living in the phyllosphere where they are exposed to diurnal cycles of environmental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhua Shan ◽  
Min Lv ◽  
Wengang Zuo ◽  
Zehui Tang ◽  
Cheng Ding ◽  
...  

AbstractThe most important measures for salt-affected mudflat soil reclamation are to reduce salinity and to increase soil organic carbon (OC) content and thus soil fertility. Salinity reduction is often accomplished through costly freshwater irrigation by special engineering measures. Whether fertility enhancement only through one-off application of a great amount of OC can improve soil properties and promote plant growth in salt-affected mudflat soil remains unclear. Therefore, the objective of our indoor pot experiment was to study the effects of OC amendment at 0, 0.5%, 1.0%, 1.5%, and 2.5%, calculated from carbon content, by one-off application of sewage sludge on soil properties, rice yield, and root growth in salt-affected mudflat soil under waterlogged conditions. The results showed that the application of sewage sludge promoted soil fertility by reducing soil pH and increasing content of OC, nitrogen and phosphorus in salt-affected mudflat soil, while soil electric conductivity (EC) increased with increasing sewage sludge (SS) application rates under waterlogged conditions. In this study, the rice growth was not inhibited by the highest EC of 4.43 dS m−1 even at high doses of SS application. The SS application increased yield of rice, promoted root growth, enhanced root activity and root flux activity, and increased the soluble sugar and amino acid content in the bleeding sap of rice plants at the tillering, jointing, and maturity stages. In conclusion, fertility enhancement through organic carbon amendment can “offset” the adverse effects of increased salinity and promote plant growth in salt-affected mudflat soil under waterlogged conditions.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


Author(s):  
Sangram Sinha ◽  

The Rhizosphere is the small zone surrounding plants' root surface is now considered as hot spot for microbial diversity and pivotal for plant-microbe interaction. The plant-microbe interaction is very vital for plant growth, productivity and stress tolerance. The present study attempted to explore the culturable microbial diversity in the tomato Rhizosphere from agricultural fields of Haripal block of West Bengal. The study found that the Rhizosphere is rich in gram-positive rods, and further biochemical characterisation predicted Bacillus cereus as the signature genus consisting of 26% of the total bacteria characterised in this study. Pearson’s correlation coefficient of different important adaptive characters of the bacterial population revealed strong correlations between salt tolerance, exo-polysaccharide (EPS) production, acid tolerance and phosphate solubilizing activity. These interactions may be crucial for Rhizosphere colonisation and overcoming hostile environment like salinity, drought, soil acidity and ultimately promote plant growth under diverse environmental stress.


Sign in / Sign up

Export Citation Format

Share Document