Microstructural Studies on Enzyme-Modified Lateritic Subgrade

Author(s):  
V. Divya ◽  
M. Nair Asha
Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

Microstructural studies by transmission electron microscopy (TEM) of diamond films grown by chemical vapor deposition (CVD) usually involve tedious specimen preparation. This process has been avoided with a technique that is described in this paper. For the first time, thick as-grown diamond films have been examined directly in a conventional TEM without thinning. With this technique, the important microstructures near the growth surface have been characterized. An as-grown diamond film was fractured on a plane containing the growth direction. It took about 5 min to prepare a sample. For TEM examination, the film was tilted about 30-45° (see Fig. 1). Microstructures of the diamond grains on the top edge of the growth face can be characterized directly by transmitted electron bright-field (BF) and dark-field (DF) images and diffraction patterns.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.


1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


2013 ◽  
Vol 738-739 ◽  
pp. 436-440 ◽  
Author(s):  
Krystian Prusik ◽  
Katarzyna Bałdys ◽  
Danuta Stróż ◽  
Tomasz Goryczka ◽  
Józef Lelątko

In present paper two ribbons of the Ni44Co6Mn36In14 (at.%) were prepared under different melt-spinning technique conditions. Microstructure of the ribbons was studied by scanning electron microscopy (SEM). Depending on the liquid ejection overpressure two types of ribbons microstructures were observed. Ribbon T1 for which ejection overpressure was 1.5 bar showed typical melt-spun ribbon microstructure consisting of a top layer of small equi-axial grains and columnar grains below. For T2 ribbon (ejection overpressure 0.2 bar) only a small fraction of the columnar grains were observed. Structure analysis of the ribbons performed by XRD showed that at room temperature both ribbons have B2 parent phase superstructure. No gamma phase precipitates were observed. In order to determine the orientation of the grains the EBSD technique was applied.


Sign in / Sign up

Export Citation Format

Share Document