scholarly journals Suitability of DIC and ESPI optical methods for monitoring fatigue damage development in X10CrMoVNb9-1 power engineering steel

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
M. Kopec ◽  
A. Brodecki ◽  
D. Kukla ◽  
Z. L. Kowalewski

AbstractThe aim of this research was to compare the effectiveness of two different optical measurement techniques (digital image correlation—DIC and electronic speckle pattern interferometry—ESPI) during fatigue damage development monitoring in X10CrMoVNb9-1 (P91) power engineering steel for pipes. The specimens machined from the as-received pipe were subjected to fatigue loadings and monitored simultaneously using DIC and ESPI techniques. It was found that DIC technique, although characterised by lower resolution, was more effective than ESPI. DIC allows to monitor the fatigue behaviour of steel specimens and accurately indicate the area of potential failure even within the initial stage of fatigue damage development.

2016 ◽  
Vol 52 (05) ◽  
pp. 269-277 ◽  
Author(s):  
D. KUKLA ◽  
Z. KOWALEWSKI ◽  
P. GRZYWNA ◽  
K. KUBIAK

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3859-3873
Author(s):  
Cedou Kumpenza ◽  
Andreas Ringhofer ◽  
Thomas Krenke ◽  
Adeayo Sotayo ◽  
Maximilian Pramreiter ◽  
...  

In various engineering applications, self-tapping screws are used to connect timber members. To describe their load-deformation relationship, a better understanding of the strain along the mechanical interface (i.e., timber-screw interface) is required. With a focus on the axial loading of self-tapping screws, only a few studies have dealt with the determination of the strain based on optical measurement techniques. Therefore, in the present study, the strain distribution at the timber-screw interface was monitored during pull-out tests using an optical measurement technique, called electronic speckle pattern interferometry (ESPI). Strains obtained from the ESPI measurements were compared with the results obtained from structural simulations conducted with finite element modelling (FEM). Three different types of solid spruce wood (Picea abies (L.) Karst.) specimens with different grain orientations connected with self-tapping screws (thread length lg = 130 mm, outer thread diameter d = 12 mm) were tested in withdrawal. There was a good agreement between the ESPI and FEM results, confirming that ESPI was a suitable measurement technique. The study also provided insights and results regarding the region of strain concentrations across the length of self-tapping screws.


2004 ◽  
Vol 1-2 ◽  
pp. 147-152 ◽  
Author(s):  
Joao Quinta da Fonseca ◽  
Michael Preuss ◽  
P. Ryan ◽  
Philip J. Withers

By combining modern surface strain measurement techniques with the traditional tensile test mechanical test, a method has been developed whereby the mechanical properties of a test sample with a heterogeneous microstructure such can be characterised in one test. In this paper the applicability to such a method of two such surface strain measurement techniques, image correlation (IC) and electronic speckle pattern interferometry (ESPI), is assessed. Two commercially available systems were used to monitor, simultaneously, the surface strain on tensile test specimens during testing. Measurements on homogeneous samples were compared with measurements made using strain gauges and excellent agreement was found. Elastic modulus and proof stress values measured in these standard samples showed that the uncertainty in the measurements was below 10%. The method was then applied to an inertia friction weld, whose strength varied linearly as a function of distance from the weld line. The values of proof stress obtained were compared with micro-hardness measurements.


2013 ◽  
Vol 486 ◽  
pp. 141-146
Author(s):  
Martin Hagara ◽  
František Šimčák ◽  
Matúš Kalina

These days are preferably used contactless optical methods for experimental investigation of strains and displacements, which give some information on whole investigated surface. In this contribution the optical systems working on electronic speckle pattern interferometry (ESPI) principle and digital image correlation (DIC) method are described. By using of ESPI and DIC methods the displacements and strains fields on chosen types of specimens are determined. Pros and cons of particular methods and influence of various factors on reached results accuracy are compared. There are also mentioned the possibilities of using of optical methods in application of devices on authors department.


2011 ◽  
Vol 284-286 ◽  
pp. 607-610
Author(s):  
Jiang Tao Ruan ◽  
Min Shen ◽  
Jing Wei Tong ◽  
Shi Bin Wang ◽  
Francesco Aymerich ◽  
...  

In this paper, the deformation measurements of impacted and non-impacted composite laminates under compressive loading are taken. [03/903]S orientated cross-ply laminated plates with impact delamination and without delamination are tested using an anti-buckling testing device in compression experiment. The delamination is induced by low-velocity impact test at the impact energy level of 3.105J. For both impacted and non-impacted specimens, the compressive deformation is measured by a carrier electronic speckle pattern interferometry (CESPI) optical measurement technique. It is found that the deformation behavior of the two specimens presents a mixed deformation mode. However, the delamination has significant effect on the compressive deformation of composite laminates.


Author(s):  
Andrzej Gessner ◽  
Roman Staniek ◽  
Jakub Michałek

The hereby presented research, funded by the restricted grant LIDER, NCBiR, deals, in part, with the identification of the full implementation potential of the proposed optical measurement techniques in determination of surface flatness parameters, and their comparative assessment. The test methods included the photogrammetric measurement technique (TRITOP, GOM) and the structural light scanning approach (scanner ATOS, GOM), while the CMM measurement (DEA Global Image Clima) was the reference method. The accordingly designed and assembled experimental test stand comprised 2 steel plates. The test surfaces of the plates were appropriately ground; subsequently, the entire test stand was blackened to ascertain efficient optical scanning. Furthermore, the plates were connected by means of 8 screws, thus introducing considerable distortion. A measurement area of 140 × 240 mm was defined on the plate test surface, as determined by CMM, denoting 15 measurement paths of 240 mm in length, distributed every 10 mm, and characterized by measurement point densities of 1, 5, and 20 pt/mm. The reference CMM measurements were conducted on 3 consecutive days at different times (22 measurements in total) to exclude any possible surface modifications. Subsequently, optical scanning was applied and the measurement points lying at the cross-sections of the CMM measurement paths were isolated from the obtained polygon mesh. To further apply the photogrammetric method, the test surface was labeled with markers distributed every 10 mm and coinciding with the CMM measurement paths. Comparative analysis of the flatness parameter for the selected CMM measurement and the measurement values obtained by means of the tested optical methods included: - the entire measurement area, - the sections comprising 80, 60, 50, 45, 40, 30, 20, 15, and 10 % of the entire measurement area, decreasing centrically, - the measurement sub-areas of 30 × 50 mm allotted in the corners and in the center of the test plate. The photogrammetric error of the tested parameter was established at 1.26–19.82 %, depending on the size of the measurement area. The corresponding error value, as determined by the structural light scanning technique, amounted to 0.03–4.31 %.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
M. Turski ◽  
M. C. Smith ◽  
P. J. Bouchard ◽  
L. Edwards ◽  
P. J. Withers

Application of electronic speckle pattern interferometry (ESPI) is described to measure the spatial variation in monotonic tensile stress-strain properties along “cross-weld” specimens machined from a stainless steel three-pass welded plate. The technique, which could also be done with digital image correlation, was applied to quantify how the material 0.2%, 1%, 2%, 5%, 10%, and 20% proof stress varied with distance from the center-line of the weldment for parent and weld material associated with the first and final passes. The stress-strain curves measured by the ESPI method correlated closely with stress-strain data measured using conventional test specimens. The measured results are consistent with the hypothesis that thermo-mechanical cycles associated with the welding process work harden previously deposited (single-pass) weld metal and the surrounding parent material. The stress-strain response of the heat affected zone adjacent to the first weld pass is consistent with an accumulated (equivalent monotonic) plastic strain of 6.5% and that of the first pass weld bead was consistent with an accumulated plastic strain of approximately 4% greater than the state of the final pass weld metal.


2013 ◽  
Vol 569-570 ◽  
pp. 799-804
Author(s):  
Duncan A. Crump ◽  
Janice M. Dulieu-Barton

Polymer closed cell foam beam specimens manufactured from H100 Divinycell (Diab) are tested in four point bend at three loading speeds using a specially designed rig and an Instron VHS test machine. Synchronised high speed images are captured using white light and infra-red thermography (IRT) to obtain the mid-point full-field deflection and strains using digital image correlation (DIC) along with the temperature evolutions. There is a marked increase in the maximum load to failure with loading rate and the optical techniques provide an opportunity to analyse the strain and temperature evolution within the specimens.


2012 ◽  
Vol 518 ◽  
pp. 24-36 ◽  
Author(s):  
Małgorzata Kujawińska ◽  
Marcin Malesa ◽  
Krzysztof Malowany ◽  
Paweł M. Błaszczyk

The implementation of selected full-field optical methods for monitoring and measurements of displacements, strains and shape of structures in power plants are reported. Digital Image Correlation, Fringe Projection and integrated thermovision-DIC method have been utilized for monitoring and control of repair processes of selected elements during general overhauls in power plants, including control of welds annealing process in boiler drum and steam pipes and measurements of geometry changes of steam pipes in “hot” and “cold” states. The experience gathered during the measurement sessions in power plants has been used for enhancement and adaptation of typical architecture of measurement systems to demanding and difficult industrial environment conditions. The measurements had been carried out in different power plants located in Poland. The possible future application of full-field optical measurement methods as the alternative to standard techniques (ultrasound, X-ray, strain gauges) and their advantages and disadvantages are discussed.


Author(s):  
U. Meier ◽  
L. Lange ◽  
J. Heinze ◽  
C. Hassa ◽  
S. Sadig ◽  
...  

Self-excited periodic instabilities in a staged lean burn injector could be forced by operating the combustor at off-design conditions. These pressure oscillations were studied in a high pressure single sector combustor with optical access. Two damper configurations were installed and tested with respect to their damping efficiency in relation to the configuration without dampers. For a variety of test conditions, derived from a part load case, time traces of pressure in the combustor were measured, and amplitudes were derived from their Fourier transformation. These measurements were performed for several combinations of the operating parameters, i.e., injector pressure drop, air/fuel ratio (AFR), pilot/main fuel split, and preheat temperature. These tests “ranked” the respective damper configurations and their individual efficiency with respect to the configuration without dampers. Although a general trend could be observed, the ranking was not strictly consistent for all operating conditions. For several test cases, preferably with pronounced self-excited pressure oscillations, phase-resolved planar optical measurement techniques were applied to investigate the change of spatial structures of fuel, reaction zones, and temperature distributions over a period of an oscillation. A pulsating motion was detected for both pilot and main flame, driven by a pulsating transport of the liquid fuel. This pulsation, in turn, is caused by a fluctuating air velocity, in connection with a prefilming airblast type atomizer. A phase shift between pilot and main injector heat release was observed, corresponding to a shift of fuel penetration. Local Rayleigh indices were calculated qualitatively, based on phase-resolved OH chemiluminescence used as marker for heat release, and corresponding pressure values. This identified regions, where a local amplification of pressure oscillations occurred. These regions were largely identical to the reaction regions of pilot and main injector, whereas the recirculation zone between the injector flows was found to exhibit a damping effect.


Sign in / Sign up

Export Citation Format

Share Document