Dependence of the impact strength of pärticulate composites on the temperature and filler volume fraction

1987 ◽  
Vol 18 (1-2) ◽  
pp. 49-56 ◽  
Author(s):  
G.C. Papanicolaou ◽  
A.G. Andreopoulos
e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 437-443 ◽  
Author(s):  
Hyeong Min Yoo ◽  
Moo Sun Kim ◽  
Bum Soo Kim ◽  
Dong Jun Kwon ◽  
Sung Woong Choi

AbstractDicyclopentadiene (DCPD) resin has gained popularity owing to its fast curing time and ease of processing with a low viscosity in the monomer state. In the present study, the impact and shear properties of a carbon fiber (CF)/p-DCPD composite were investigated. The CF/p-DCPD composite was manufactured by vacuum-assisted resin transfer molding with CF as the reinforcement and p-DCPD as the resin with a maximum fiber volume fraction of 55 weight percent. Impact and shear properties of the CF/p-DCPD composite were evaluated and compared with those of a CF/Epoxy composite. The maximum shear stress and modulus of the CF/p-DCPD composite were lower than that of the CF/Epoxy composite. However, the CF/p-DCPD composite had higher toughness than that of the CF/Epoxy composite; this indicates that it is tougher and exhibits a more ductile load-displacement response with a lower modulus and larger failure deformation. The impact strength of the CF/p-DCPD composite was about three time that of the CF/Epoxy composite. The higher impact strength of the CF/p-DCPD composite is attributed to the resin characteristics: epoxy resin has a more brittle behavior, and hence, higher energy is required for crack propagation due to fracture.


2015 ◽  
Vol 641 ◽  
pp. 120-123 ◽  
Author(s):  
Robert Dąbrowski ◽  
Janusz Krawczyk ◽  
Edyta Rożniata

The results of investigations of the influence of the ageing temperature on the selected mechanical properties i.e. hardness, fracture toughness (examined by the linear elastic fracture mechanics - KIctest) and impact strength (KV) of two-phase Ti6Al7Nb alloy, are presented in the hereby paper. Investigations were performed in the ageing temperatures range: 450÷650°C of the alloy previously undercooled from the selected heating temperature (in two-phase range) - equal 970°C. The heating temperature was determined on the basis of the dilatometric curve of the alloy heating in the system ΔL = f ((T), where: ΔL – change of the sample length, T – temperature, which was then differentiated in the system: ΔL/ΔT = f (T). The dilatometer L78 R.I.T.A of the LINSEIS Company was used in the tests. Investigations of the alloy microstructure in the ageing temperatures range 450÷650°C were carried out by means of the light microscope Axiovert 200 MAT of the Carl Zeiss Company. It was found that nearly equiaxial grains of the primary α phase occur in the microstructure (of the volume fraction app. 30%) and that the volume fraction of the new lamellar α phase - formed from the supersaturated β phase - increases. With an increase of the alloy ageing temperature, in the mentioned above range, a small increase of its hardness from 305 to 324HV as well as a decrease of stress intensity factor KIcfrom 67.3 to 48.6 MPa x m1/2and impact strength (KV) from 40.2 to 31.3 J. The impact tests results were supplemented by the fractographic documentation. It was found, that the characteristic features of the fractures of impact test samples do not exhibit essential differences in dependence of the ageing temperature and material hardness. The fractographic investigations were performed by means of the scanning electron microscope NovaNanoSEM 450.


2021 ◽  
Vol 4 ◽  
pp. 146-150
Author(s):  
Arthur Y. Leiwakabessy ◽  
Benjamin G. Tentua ◽  
Fany Laamena

Durian rind fiber composite as a reinforcement is one of the interesting research areas. Some of the advantages associated with using natural fibers due to reinforcement in polymers are their non-abrasive properties and low-cost consumption. Durian rind when processed further can be made into cellulose fiber which can be used as a natural filler in unsaturated polyester composites. Among various types of natural fibers, durian skin fiber is an alternative polymer composite filler. Durian skin can be obtained easily because it is a family waste that has not been used. To get a new composite material made from durian skin waste, and to help the community and government in handling durian skin waste. The purpose of this study was to determine the maximum value of the variation of the volume fraction of durian skin fiber on the impact strength and hardness strength according to the desired application. This study uses the Hand Lay Up method, in the manufacture of single fiber composites with variations in volume fraction of durian skin fiber: polyester matrix, namely, 10%: 90%, 20%: 80%, 30%: 70%, 40%: 60% and 50 %:50%. The results showed that there was an increase in the impact strength and hardness strength with the addition of the volume fraction, where the highest impact energy for the volume fraction of durian skin fiber was 50%: 50%, 0.7738 J, and the highest impact value was 0.0096725 J/mm² and energy the lowest impact is 10%: 90%, 0.461 J. and the lowest impact price is 0.0057685 J/mm². So it can be concluded that the impact strength and hardness of the durian skin fiber composite increased with the increase in the volume fraction of the fiber.


2014 ◽  
Vol 59 (3) ◽  
pp. 1103-1106
Author(s):  
B. Kalandyk ◽  
R. Zapała ◽  
Ł. Boroń ◽  
M. Solecka

Abstract Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC) and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A) grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1041 ◽  
Author(s):  
Imran Khan ◽  
Ghulam Hussain ◽  
Khalid A Al-Ghamdi ◽  
Rehan Umer

The impact strength and surface properties of polymeric materials are of critical importance in various engineering applications. Friction stir processing (FSP) is a novel method for the fabrication of composite materials with superior mechanical properties. The main objective of this study is to investigate the impact strength and Rockwell hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated through FSP. The spindle speed (ω), tool traverse speed (f), volume fraction (v) of strengthening material and shoulder temperature (T) were key processing parameters. The analysis of variance (ANOVA) indicated that the selected processing parameters were significant. Microscopic investigations unveiled that high levels of (v, f) and low levels of (T, ω) caused agglomeration of the reinforcing particles and induced voids and channels, which consequently reduced the impact strength and hardness of the manufactured composite. However, medium conditions of processing parameters exhibited better distribution of particles with minimum defects, and hence resulted in better mechanical properties. Finally, the models to predict the impact strength and hardness are proposed and verified. Sets of process parameters favorable to maximize the impact strength and Rockwell hardness were worked out, which were believed to increase the impact strength, Rockwell hardness number, and ultimate tensile strength by 27.3%, 5.7%, and 11.2%, respectively.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Gede Aprianto ◽  
I Nyoman Pasek Nugraha ◽  
Kadek Rihendra Dantes

Penelitian ini bertujuan untuk mengetahui fraksi volume terbaik dari sifat mekanik komposit matriks polimer polyester yang diperkuat serat alam agave sisal. Sifat mekanik yang dimaksud adalah kekuatan impak dan mikrografi. Desain penelitian yang digunakan dalam penelitian ini adalah penelitian eksperimen dengan metode single factor repeated measures design. Pembuatan sampel komposit matriks polimer polyester yang diperkuat serat alam agave sisal menggunakan metode hand lay up. Variasi fraksi volume serat yang digunakan adalah 0%, 20%, 40%, dan 60%. Setiap fraksi volume serat yang diuji, dibuatkan masing-masing 10 (sepuluh) buah spesimen. Data-data yang diperoleh dalam penelitian ini di dapat dari energi serap (Es) pengujian impak yang selanjutnya diolah dan dianalisa menggunakan Anava As. Hasil penelitian menunjukkan bahwa : (1) Fraksi volume serat terbaik dalam pengujian impak adalah fraksi volume serat 40% dengan kekuatan impak sebesar 4.092,00818 J/m2, sedangkan fraksi volume serat terendah adalah fraksi volume serat 0% dengan kekuatan impak sebesar 604,50120 J/m2; (2) Berdasarkan hasil pengujian mikrografi dari patahan hasil pengujian impak menunjukkan bahwa secara umum pola patahan yang terjadi pada komposit adalah kombinasi dari patahan getas (brittle fracture) dan pull-out fibers fracture atau dikenal dengan patahan sikat (brush fracture). Kesimpulan dari penelitian ini adalah fraksi volume serat 40% memiliki sifat mekanik terbaik dibandingkan dengan fraksi volume serat lainnya sehingga dapat dijadikan sebagai salah satu bahan baku alternatif pengganti serat gelas, dimana kekuatan impak yang dihasilkan sebesar 4.092,00818 J/m2. Dilihat dari hasil pengujian mikrografi, secara umum dikategorikan memiliki pola patahan sikat (brush fracture).Kata Kunci : komposit, matriks polimer polyester, serat alam agave sisal, sifat mekanis This research aims to know the best fiber volume fraction on mechanical properties of agave sisal natural fiber which is reinforced by polyester matrix composites. Those mechanical properties are the impact strength and the micrographic. The research design used in this research is an experimental research with single factor repeated measures design method. The manufacture of agave sisal natural fiber which is reinforced by polyester matrix composites specimens used hand lay-up methods. The variations of the fiber volume fraction used were 0%, 20%, 40% and 60%. There are 10 (ten) pieces of specimens for each tested fiber volume fraction. The research data was obtained from specimens absorbed energy (Es). Then, they were processed and analyzed by using Anova As. The result of this research showed that: (1) the best fiber volume fraction during impact testing is 40% with 4.092,00818 J/m2 of the impact strength. Meanwhile, the worst fiber volume fraction is 0% with 604,50120 J/m2 of the impact strength; (2) based on the micrographic test, the fractures from the impact test showed that the pattern of those fractures generally consists the combination of brittle fractures and pull-out fiber fractures. This combination is known as brush fractures. The conclusion of this research is the 40% of fiber volume fraction has the best mechanical properties compared to the other fiber volume fraction. Thus, it can be used as the alternative raw material for fiberglass. The impact strength produced was 4.092,00818 J/m2. Based from the micrographic test, the fraction is categorized as the brush fractures pattern.keyword : agave sisal natural fiber, composite, material properties, polyester polymer matrix


Sign in / Sign up

Export Citation Format

Share Document