Influence of the Ageing Temperature on the Selected Mechanical Properties of the Ti6Al7Nb Alloy

2015 ◽  
Vol 641 ◽  
pp. 120-123 ◽  
Author(s):  
Robert Dąbrowski ◽  
Janusz Krawczyk ◽  
Edyta Rożniata

The results of investigations of the influence of the ageing temperature on the selected mechanical properties i.e. hardness, fracture toughness (examined by the linear elastic fracture mechanics - KIctest) and impact strength (KV) of two-phase Ti6Al7Nb alloy, are presented in the hereby paper. Investigations were performed in the ageing temperatures range: 450÷650°C of the alloy previously undercooled from the selected heating temperature (in two-phase range) - equal 970°C. The heating temperature was determined on the basis of the dilatometric curve of the alloy heating in the system ΔL = f ((T), where: ΔL – change of the sample length, T – temperature, which was then differentiated in the system: ΔL/ΔT = f (T). The dilatometer L78 R.I.T.A of the LINSEIS Company was used in the tests. Investigations of the alloy microstructure in the ageing temperatures range 450÷650°C were carried out by means of the light microscope Axiovert 200 MAT of the Carl Zeiss Company. It was found that nearly equiaxial grains of the primary α phase occur in the microstructure (of the volume fraction app. 30%) and that the volume fraction of the new lamellar α phase - formed from the supersaturated β phase - increases. With an increase of the alloy ageing temperature, in the mentioned above range, a small increase of its hardness from 305 to 324HV as well as a decrease of stress intensity factor KIcfrom 67.3 to 48.6 MPa x m1/2and impact strength (KV) from 40.2 to 31.3 J. The impact tests results were supplemented by the fractographic documentation. It was found, that the characteristic features of the fractures of impact test samples do not exhibit essential differences in dependence of the ageing temperature and material hardness. The fractographic investigations were performed by means of the scanning electron microscope NovaNanoSEM 450.

2006 ◽  
Vol 317-318 ◽  
pp. 305-308 ◽  
Author(s):  
Rak Joo Sung ◽  
Takafumi Kusunose ◽  
Tadachika Nakayama ◽  
Yoon Ho Kim ◽  
Tohru Sekino ◽  
...  

A novel transparent polycrystalline silicon nitride was fabricated by hot-press sintering with MgO and AlN as additives. The mixed powder with 3 wt.% MgO and 9 wt.% AlN was sintered at 1900oC for 1 hour under 30 MPa pressure in a nitrogen gas atmosphere. Transparent polycrystalline silicon nitride was successfully fabricated. The mechanical properties such as density, hardness, young’s modulus, fracture strength and fracture toughness were evaluated. The effect of α/β phase on the mechanical properties of transparent polycrystalline silicon nitride was investigated. The properties were changed depending on the amount of α/β phase. The hardness and Young's modulus increased with increasing the volume fraction of α-phase fraction as a reflection of the higher hardness of α-phase Si3N4. The fracture toughness and fracture strength decreased with decreasing the volume fraction of β-phase Si3N4.


2014 ◽  
Vol 59 (3) ◽  
pp. 1103-1106
Author(s):  
B. Kalandyk ◽  
R. Zapała ◽  
Ł. Boroń ◽  
M. Solecka

Abstract Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC) and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A) grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1041 ◽  
Author(s):  
Imran Khan ◽  
Ghulam Hussain ◽  
Khalid A Al-Ghamdi ◽  
Rehan Umer

The impact strength and surface properties of polymeric materials are of critical importance in various engineering applications. Friction stir processing (FSP) is a novel method for the fabrication of composite materials with superior mechanical properties. The main objective of this study is to investigate the impact strength and Rockwell hardness of UHMW polyethylene composites reinforced with nano-hydroxyapatite particles fabricated through FSP. The spindle speed (ω), tool traverse speed (f), volume fraction (v) of strengthening material and shoulder temperature (T) were key processing parameters. The analysis of variance (ANOVA) indicated that the selected processing parameters were significant. Microscopic investigations unveiled that high levels of (v, f) and low levels of (T, ω) caused agglomeration of the reinforcing particles and induced voids and channels, which consequently reduced the impact strength and hardness of the manufactured composite. However, medium conditions of processing parameters exhibited better distribution of particles with minimum defects, and hence resulted in better mechanical properties. Finally, the models to predict the impact strength and hardness are proposed and verified. Sets of process parameters favorable to maximize the impact strength and Rockwell hardness were worked out, which were believed to increase the impact strength, Rockwell hardness number, and ultimate tensile strength by 27.3%, 5.7%, and 11.2%, respectively.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2006 ◽  
Vol 503-504 ◽  
pp. 757-762 ◽  
Author(s):  
Irina P. Semenova ◽  
Lilia R. Saitova ◽  
Georgy I. Raab ◽  
Alexander Korshunov ◽  
Yuntian T. Zhu ◽  
...  

This paper investigates microstructures and mechanical properties of the TI-6AL-4V ELI alloy processed by ECAP and extrusion with various morphology of α and β-phase. Preliminary thermal treatment consisted of quenching and further high-temperature ageing. The present work reveals that the decrease of volume fraction of α-phase globular component in the initial billet results in a more homogeneous structure refinement during SPD, lower internal stress, enhancement of microstructure stability and mechanical properties. An ultimate strength of UTS ≥1350 MPa was obtained in the Ti-6Al-4V ELI alloy while maintaining a ductility of δ≥11%.


10.30544/423 ◽  
2019 ◽  
Vol 25 (2) ◽  
pp. 147-162
Author(s):  
Franklin Amaechi Anene ◽  
Nkem Emelike Nwankwo ◽  
Victor Ugochukwu Nwoke

The effect of dopant and heat treatment on the microstructure and mechanical properties of Nickel-aluminum bronze (Cu-10%Al-5%Ni-5%Fe-x%Mo) were extensively investigated. The cast samples were heat treated through different processes, including solutionizing, quenching, and aging; their microstructures were examined using an optical microscope, scanning electron microscopy and energy dispersive spectroscopy analysis and their mechanical properties determined. The microstructure of the as-cast samples consisted of Cu-rich ‘α-phase, ‘κ-phases and small volume fraction of β'-phase while solutionizing transformed the β'-phase to a homogenous β-phase, α, and κ phases. Quenching transformed all β phase to β'-phase, however, aging the alloy precipitated fine dispersive strengthening κ-phases from the quenched microstructure. The results of the mechanical tests showed that the aged samples had improved excellent mechanical properties compared to the as-cast samples. Compared to the base alloy, the tensile strength and hardness of the aged 2% Mo sample increased by 58% and 55%, respectively while the impact strength and elongation decreased by 27% and 22%, respectively. Similarly, the tensile strength and hardness of the aged 3% Mo sample increased by 44% and 49%, respectively, while the impact strength and % elongation decreased by 23.9% and 24.9%, respectively.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Gede Aprianto ◽  
I Nyoman Pasek Nugraha ◽  
Kadek Rihendra Dantes

Penelitian ini bertujuan untuk mengetahui fraksi volume terbaik dari sifat mekanik komposit matriks polimer polyester yang diperkuat serat alam agave sisal. Sifat mekanik yang dimaksud adalah kekuatan impak dan mikrografi. Desain penelitian yang digunakan dalam penelitian ini adalah penelitian eksperimen dengan metode single factor repeated measures design. Pembuatan sampel komposit matriks polimer polyester yang diperkuat serat alam agave sisal menggunakan metode hand lay up. Variasi fraksi volume serat yang digunakan adalah 0%, 20%, 40%, dan 60%. Setiap fraksi volume serat yang diuji, dibuatkan masing-masing 10 (sepuluh) buah spesimen. Data-data yang diperoleh dalam penelitian ini di dapat dari energi serap (Es) pengujian impak yang selanjutnya diolah dan dianalisa menggunakan Anava As. Hasil penelitian menunjukkan bahwa : (1) Fraksi volume serat terbaik dalam pengujian impak adalah fraksi volume serat 40% dengan kekuatan impak sebesar 4.092,00818 J/m2, sedangkan fraksi volume serat terendah adalah fraksi volume serat 0% dengan kekuatan impak sebesar 604,50120 J/m2; (2) Berdasarkan hasil pengujian mikrografi dari patahan hasil pengujian impak menunjukkan bahwa secara umum pola patahan yang terjadi pada komposit adalah kombinasi dari patahan getas (brittle fracture) dan pull-out fibers fracture atau dikenal dengan patahan sikat (brush fracture). Kesimpulan dari penelitian ini adalah fraksi volume serat 40% memiliki sifat mekanik terbaik dibandingkan dengan fraksi volume serat lainnya sehingga dapat dijadikan sebagai salah satu bahan baku alternatif pengganti serat gelas, dimana kekuatan impak yang dihasilkan sebesar 4.092,00818 J/m2. Dilihat dari hasil pengujian mikrografi, secara umum dikategorikan memiliki pola patahan sikat (brush fracture).Kata Kunci : komposit, matriks polimer polyester, serat alam agave sisal, sifat mekanis This research aims to know the best fiber volume fraction on mechanical properties of agave sisal natural fiber which is reinforced by polyester matrix composites. Those mechanical properties are the impact strength and the micrographic. The research design used in this research is an experimental research with single factor repeated measures design method. The manufacture of agave sisal natural fiber which is reinforced by polyester matrix composites specimens used hand lay-up methods. The variations of the fiber volume fraction used were 0%, 20%, 40% and 60%. There are 10 (ten) pieces of specimens for each tested fiber volume fraction. The research data was obtained from specimens absorbed energy (Es). Then, they were processed and analyzed by using Anova As. The result of this research showed that: (1) the best fiber volume fraction during impact testing is 40% with 4.092,00818 J/m2 of the impact strength. Meanwhile, the worst fiber volume fraction is 0% with 604,50120 J/m2 of the impact strength; (2) based on the micrographic test, the fractures from the impact test showed that the pattern of those fractures generally consists the combination of brittle fractures and pull-out fiber fractures. This combination is known as brush fractures. The conclusion of this research is the 40% of fiber volume fraction has the best mechanical properties compared to the other fiber volume fraction. Thus, it can be used as the alternative raw material for fiberglass. The impact strength produced was 4.092,00818 J/m2. Based from the micrographic test, the fraction is categorized as the brush fractures pattern.keyword : agave sisal natural fiber, composite, material properties, polyester polymer matrix


2015 ◽  
Vol 816 ◽  
pp. 804-809 ◽  
Author(s):  
Xiao Yun Song ◽  
Yong Ling Wang ◽  
Wen Jing Zhang ◽  
Song Xiao Hui ◽  
Wen Jun Ye

The effects of different duplex annealing treatments on the microstructure and mechanical properties of Ti62421S alloy plate were studied by optical microscope (OM), scanning electron microscope (SEM), electron probe microanalysis (EPMA) and tensile tests, The experimental results indicated that the original microstructure of Ti62421S was composed of primary α phase (αp) and intergranular β phase. With the increase of first-stage annealing temperature, the volume fraction of equiaxed αp phase decreased. In contrast, the content of transformed β structure (βt) increased, and the width of lamellar secondary α phase (αs) in βt increased. Consequently, the yield strength (σ0.2) and ultimate tensile strength (σb) at room temperature and 600°C increased, while the elongation (δ5) declined. After 1000°C/2h/AC+ 600°C/2h/AC duplex annealing treatment, Ti62421S alloy plate showed superior tensile properties. The values of σb and δ5 at room temperature reached 1133MPa and 6%, as well as the value of σb at 600°C exceeded 710MPa.


2008 ◽  
Vol 47-50 ◽  
pp. 1450-1453 ◽  
Author(s):  
Won Yong Kim ◽  
Han Sol Kim

The effect of Ge and oxygen content on microstructural formation and mechanical properties of Ti-Nb alloys were investigated in order to design a desirable Ti based alloy through casting process. Three phase mixtures consisting of bcc-structured β phase, orthorhombic structured α" phase and intermediate ω phase were found depending on Nb, Ge, oxygen content in the present alloy system. The volume fraction of α" phase and ω phase decreased with increasing Ge or oxygen content. This microstructural information may indicate that both Ge and oxygen act to increase the stability of β phase rather than α" phase in metastable β-Ti based alloys prepared by water quenching. Elastic modulus values were sensitive to phase stability of constituent phases.


2003 ◽  
Vol 11 (4) ◽  
pp. 321-326 ◽  
Author(s):  
Xiuying Qiao ◽  
Yong Zhang ◽  
Yinxi Zhang

Ink-eliminated paper sludge flour (IESF) from the recycling of waste paper was used as a new kind of filler in polypropylene (PP). The crystal structures, thermal behavior and mechanical properties of the resulting composites were investigated and compared with those of conventional PP filled with calcium carbonate (CaCO3). The addition of the filler not only had positive and negative effects on the crystal growth of the α-phase and β-phase of PP respectively, but also induced the crystallization orientation of PP along the b-axis and made the PP composites possess higher crystallization and melting temperatures, due to its nucleation regent effect. Experimental results also showed that the nucleation regent effect of IESF was better than that of CaCO3 for PP crystallization. With the same filler content, the mechanical properties of the IESF/PP composites are better than those of CaCO3/PP composites, except for the impact strength and elongation.


Sign in / Sign up

Export Citation Format

Share Document