Effects of retinoic acid and estrogens on oxytocin gene expression in the rat uterus: in vitro and in vivo studies

1995 ◽  
Vol 114 (1-2) ◽  
pp. 69-76 ◽  
Author(s):  
A Larcher
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


2018 ◽  
Vol 48 (6) ◽  
pp. 2286-2301 ◽  
Author(s):  
Dijiong  Wu ◽  
Keding Shao ◽  
Qihao Zhou ◽  
Jie Sun ◽  
Ziqi Wang ◽  
...  

Background/Aims: Although the cure rate of acute promyelocytic leukemia (APL) has exceeded 90%, the relapse/refractory APL that resistant to all-trans retinoic acid (ATRA) or ATO was still serious concern. Matrine (MAT) could improve the differentiation ability of ATRA-resistant APL cells. This study aimed to explore how the APL-specific fusion protein was degraded in ATRA-resistant APL with the application of MAT and ATRA. Methods: ATRA-sensitive (NB4) and ATRA-resistant (NB4-LR1) cell lines were used. Nitroblue tetrazolium reduction assay and flow cytometry were used to detect the differentiation ability. The activity of ubiquitin-proteasome and autophagy-mediated pathways in both cells treated with ATRA with or without MAT were compared in protein and mRNA level (Western blot analysis, qRT-PCR), the Fluorescent substrate Suc-LLVY-AMC detection was used to detect the activity of proteasome, and electron microscope for observing autophagosome. MG 132(proteasome inhibitor), rapamycin (autophagy activator), hydroxychloroquine (lysosomal inhibitor) and STI571 [retinoic acid receptor alpha (RARα) ubiquitin stabilizer] were used as positive controls. The effect of MAT was observed in vivo using xenografts. Results: MAT improved the sensitivity of NB4-LR1cells to ATRA treatment, which was consistent with the expression of PML-RARα fusion protein. MAT promoted the ubiquitylation level in NB4-LR1. MG 132 induced the decrease in RARα in both cell lines, and hampered the differentiation of NB4 cells. MAT also promoted the autophagy in NB4-LR1 cells, with an increase in microtubule-associated protein 1 light chain3 (LC3)-II and LC3-II/LC3-I ratio and exhaustion of P62. The expression of LC3II increased significantly in the MAT and ATRA + MAT groups in combination with lysosomal inhibitors. A similar phenomenon was observed in mouse xenografts. MAT induced apoptosis and differentiation. Conclusions: Autophagy and ubiquitin-mediated proteolytic degradation of PML/RARα fusion protein are crucial in MAT-induced differentiation sensitivity recovery of NB4-LR1 cells.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4282-4289 ◽  
Author(s):  
Wenlin Shao ◽  
Laura Benedetti ◽  
William W. Lamph ◽  
Clara Nervi ◽  
Wilson H. Miller

Abstract The unique t(15; 17) of acute promyelocytic leukemia (APL) fuses the PML gene with the retinoic acid receptor α (RARα) gene. Although retinoic acid (RA) inhibits cell growth and induces differentiation in human APL cells, resistance to RA develops both in vitro and in patients. We have developed RA-resistant subclones of the human APL cell line, NB4, whose nuclear extracts display altered RA binding. In the RA-resistant subclone, R4, we find an absence of ligand binding of PML-RARα associated with a point mutation changing a leucine to proline in the ligand-binding domain of the fusion PML-RARα protein. In contrast to mutations in RARα found in retinoid-resistant HL60 cells, in this NB4 subclone, the coexpressed RARα remains wild-type. In vitro expression of a cloned PML-RARα with the observed mutation in R4 confirms that this amino acid change causes the loss of ligand binding, but the mutant PML-RARα protein retains the ability to heterodimerize with RXRα and thus to bind to retinoid response elements (RAREs). This leads to a dominant negative block of transcription from RAREs that is dose-dependent and not relieved by RA. An unrearranged RARα engineered with this mutation also lost ligand binding and inhibited transcription in a dominant negative manner. We then found that the mutant PML-RARα selectively alters regulation of gene expression in the R4 cell line. R4 cells have lost retinoid-regulation of RXRα and RARβ and the RA-induced loss of PML-RARα protein seen in NB4 cells, but retain retinoid-induction of CD18 and CD38. Thus, the R4 cell line provides data supporting the presence of an RARα-mediated pathway that is independent from gene expression induced or repressed by PML-RARα. The high level of retinoid resistance in vitro and in vivo of cells from some relapsed APL patients suggests similar molecular changes may occur clinically.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 114-123 ◽  
Author(s):  
S Matikainen ◽  
T Ronni ◽  
M Hurme ◽  
R Pine ◽  
I Julkunen

All-trans-retinoic acid (ATRA) is the drug of choice in the treatment of acute promyelocytic leukemia (APL). ATRA induces both in vitro and in vivo differentiation of APL cells into mature granulocytes. However, the molecular mechanisms involved in ATRA-dependent growth inhibition and cellular differentiation are not presently understood. The NB4 cell line, which is derived from the bone marrow of a patient with APL during relapse, can be used as a model system to study the growth and differentiation of APL cells. Because interferon (IFN) regulatory factors (IRF-1 and IRF-2) and other IFN-inducible gene products regulate cell growth, we analyzed the effects of ATRA on the expression of these genes. We show that ATRA directly activates IRF-1 gene expression, followed by activation of IRF-2 and 2′–5′ oligoadenylate synthetase (OAS) gene expression with slower kinetics. In addition to NB4 cells, ATRA also activated IRF-1 gene expression in HL-60, U937, and THP-1 cells, which all respond to ATRA by growth inhibition. A more than additive increase in IRF-1 gene expression was seen with ATRA and IFN-gamma in NB4 cells. ATRA did not activate nuclear factor kappa B or signal transducer and activator of transcription (STAT) activation pathways, suggesting that an alternate mechanism is involved in IRF-1 gene activation. The ATRA-induced expression of IRF-1, an activator of transcription and repressor of transformation, may be one of the molecular mechanisms of ATRA-induced growth inhibition, and the basis for the synergistic actions of ATRA and IFNs in myeloid leukemia cells.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 357-368 ◽  
Author(s):  
R.A. Conlon ◽  
J. Rossant

Exogenous retinoic acid (RA) has teratogenic effects on vertebrate embryos and alters Hox-C gene expression in vivo and in vitro. We wish to examine whether RA has a role in the normal regulation of Hox-C genes, and whether altered Hox-C gene expression in response to RA leads to abnormal morphology. The expression of 3′ Hox-2 genes (Hox-2.9, Hox-2.8, Hox-2.6 and Hox-2.1) and a 5′ gene (Hox-2.5) were examined by whole-mount in situ hybridization on embryos 4 hours after maternal administration of teratogenic doses of RA on embryonic day 7 to 9. The expression of the 3′ Hox-2 genes was found to be ectopically induced in anterior regions in a stage-specific manner. The Hox-2.9 and Hox-2.8 genes were induced anteriorly in the neurectoderm in response to RA on day 7 but not at later stages. Expression of Hox-2.6 and Hox-2.1 was ectopically induced anteriorly in neurectoderm in response to RA on day 8. Hox-2.1 remained responsive on day 9, whereas Hox-2.6 was no longer responsive at this stage. The expression of the 5′ gene Hox-2.5 was not detectably altered at any of these stages by RA treatments. We also examined the response of other genes whose expression is spatially regulated in early embryos. The expression of En-2 and Wnt-7b was not detectably altered by RA, whereas RAR beta expression was induced anteriorly by RA on day 7 and 8. Krox-20 expression was reduced in a stage- and region-specific manner by RA. The ectopic anterior expression of Hox-2.8 and Hox-2.9 induced by RA on day 7 was persistent to day 8, as was the altered expression of Krox-20. The altered pattern of expression of these genes in response to RA treatment on day 7 may be indicative of a transformation of anterior hindbrain to posterior hindbrain, specifically, a transformation of rhombomeres 1 to 3 towards rhombomere 4 identity with an anterior expansion of rhombomere 5. The ectopic expression of the 3′ Hox-2 genes in response to RA is consistent with a role for these genes in mediating the teratogenic effects of RA; the rapid response of the Hox-C genes to RA is consistent with a role for endogenous RA in refining 3′ Hox-C gene expression boundaries early in development.


2007 ◽  
Vol 292 (1) ◽  
pp. G315-G322 ◽  
Author(s):  
C. Caballero-Franco ◽  
K. Keller ◽  
C. De Simone ◽  
K. Chadee

Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups ( Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.


Blood ◽  
1996 ◽  
Vol 88 (1) ◽  
pp. 114-123 ◽  
Author(s):  
S Matikainen ◽  
T Ronni ◽  
M Hurme ◽  
R Pine ◽  
I Julkunen

Abstract All-trans-retinoic acid (ATRA) is the drug of choice in the treatment of acute promyelocytic leukemia (APL). ATRA induces both in vitro and in vivo differentiation of APL cells into mature granulocytes. However, the molecular mechanisms involved in ATRA-dependent growth inhibition and cellular differentiation are not presently understood. The NB4 cell line, which is derived from the bone marrow of a patient with APL during relapse, can be used as a model system to study the growth and differentiation of APL cells. Because interferon (IFN) regulatory factors (IRF-1 and IRF-2) and other IFN-inducible gene products regulate cell growth, we analyzed the effects of ATRA on the expression of these genes. We show that ATRA directly activates IRF-1 gene expression, followed by activation of IRF-2 and 2′–5′ oligoadenylate synthetase (OAS) gene expression with slower kinetics. In addition to NB4 cells, ATRA also activated IRF-1 gene expression in HL-60, U937, and THP-1 cells, which all respond to ATRA by growth inhibition. A more than additive increase in IRF-1 gene expression was seen with ATRA and IFN-gamma in NB4 cells. ATRA did not activate nuclear factor kappa B or signal transducer and activator of transcription (STAT) activation pathways, suggesting that an alternate mechanism is involved in IRF-1 gene activation. The ATRA-induced expression of IRF-1, an activator of transcription and repressor of transformation, may be one of the molecular mechanisms of ATRA-induced growth inhibition, and the basis for the synergistic actions of ATRA and IFNs in myeloid leukemia cells.


1998 ◽  
Vol 5 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Herbert H. Engelhard

Background: Antisense oligodeoxynucleotides (ODNs) have been proposed as a new therapy for patients with cancer, including malignant brain tumors. Antisense ODNs are taken up by tumor cells and selectively block gene expression. Use of ODNs for brain tumors is attractive due to their theoretical specificity, relative ease of production and, to date, paucity of reported adverse effects. This article presents current information regarding antisense ODNs and their possible future use for the treatment of brain tumors. Methods: The available published experimental and clinical information regarding antisense ODN treatment of glioblastoma cells and administration into the central nervous system (CNS) was reviewed. Other clinically relevant information pertaining to the molecular biology of antisense ODNs was also collected and summarized. Results: Targets for antisense ODN therapy in malignant glioma cells have included c-myc, c-myb, c-sis, c-erb B, CD44, p34cdc2, bFGF, PDGF, TGF-beta, IGF-1, PKC-alpha tumor necrosis factor, urokinase, and S100beta protein. Few in vivo studies of ODN treatment of brain tumors have yet been reported. Systemically administered ODNs enter the brain only in extremely small quantities; therefore, microinfusion into the brain has been recommended. Conclusions: Antisense ODNs have been used successfully to block glioblastoma gene expression in vitro and expression of multiple genes within the CNS of experimental animals. Upcoming clinical trials will address the safety of antisense ODN use against malignant brain tumors.


1996 ◽  
Vol 52 (6) ◽  
pp. 463-481 ◽  
Author(s):  
Ali Arslan ◽  
Hans H. Zingg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document