Biological Processes Affecting Contaminants Transport and Fate

Author(s):  
R.M. Maier
Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


2017 ◽  
Vol 3 (3) ◽  
pp. 9-29
Author(s):  
Juan Llamas-Rodriguez

Borders and bodies are increasingly regulated by data-capturing mechanisms spread across the world through information and communication technologies. This article traces the features and implications of such a border-body datalogical entanglement through the figure of the drug mule. It analyzes government documents and recorded case studies to argue that this figure emerges from an assemblage of cultural narratives, legal structures, human labor, technical practices, and biological processes. The datalogical drug mule is already implicated in a struggle over what, and how, data is meaningful and actionable. Investigating this figure allows us to begin disentangling the data-driven mechanisms that constitute modern borders and bodies while at the same time accounting for analog continuities in contemporary practices of border security.


2015 ◽  
Vol 11 (1) ◽  
pp. 2897-2908
Author(s):  
Mohammed S.Aljohani

Tomography is a non-invasive, non-intrusive imaging technique allowing the visualization of phase dynamics in industrial and biological processes. This article reviews progress in Electrical Capacitance Volume Tomography (ECVT). ECVT is a direct 3D visualizing technique, unlike three-dimensional imaging, which is based on stacking 2D images to obtain an interpolated 3D image. ECVT has recently matured for real time, non-invasive 3-D monitoring of processes involving materials with strong contrast in dielectric permittivity. In this article, ECVT sensor design, optimization and performance of various sensors seen in literature are summarized. Qualitative Analysis of ECVT image reconstruction techniques has also been presented.


2018 ◽  
Author(s):  
Yingqian Wang ◽  
Xiaoxia Hu ◽  
Lingling Zhang ◽  
Chunli Zhu ◽  
Jie Wang ◽  
...  

Extracellular vesicles (EVs) are involved in the regulation of cell physiological activity and the reconstruction of extracellular environment. Matrix vesicles (MVs) are a type of EVs, and they participate in the regulation of cell mineralization. Herein, bioinspired MVs embedded with black phosphorus are functionalized with cell-specific aptamer (denoted as Apt-bioinspired MVs) for stimulating biomineralization. The aptamer can direct bioinspired MVs to targeted cells, and the increasing concentration of inorganic phosphate originated from the black phosphorus can facilitate cell biomineralization. The photothermal effect of the Apt-bioinspired MVs also positively affects mineralization. In addition, the Apt-bioinspired MVs display outstanding bone regeneration performance. Considering the excellent behavior of the Apt-bioinspired MVs for promoting biomineralization, our strategy provides a way of designing bionic tools for studying the mechanisms of biological processes and advancing the development of medical engineering.<br>


2019 ◽  
Author(s):  
Terry Gani ◽  
Michael Orella ◽  
Eric Anderson ◽  
Michael Stone ◽  
Fikile Brushett ◽  
...  

Lignin is an abundant biopolymer important for plant function while holding promise as a renewable source of valuable chemicals. Although the lignification process in plant cell walls has been long-studied, a comprehensive, mechanistic understanding on the molecular scale remains elusive. A better understanding of lignification will lead to improved atomistic models of the plant cell wall that could, in turn, inform effective strategies for biomass valorization. Here, using first-principles quantum chemical calculations, we show that a simple model of kinetically-controlled radical coupling broadly rationalizes qualitative experimental observations of lignin structure across a wide variety of biomass types, thus paving the way for predictive, first-principles models of lignification while highlighting the ability of computational chemistry to help illuminate complex biological processes.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 659-666
Author(s):  
Anu Iswarya Jaisankar ◽  
Raghu Nandhakumar ◽  
Ezhilarasan D

Covid 19 pandemic is a terrible ongoing pandemic that has spread worldwide. Covid 19 Pandemic has infected more than 188 countries and territories across the globe. The basic biological processes and functional limitations that govern the development and survival of the particular behaviors of the virus continue to be elucidated. On that note, Prevention is the only cure. The World is facing a great economic turmoil. People suffer from Psychological stress and Economic burden combined. Here assessing the Psychological, Physical, Social, Financial and Economic impacts of the Pandemic on the people becomes really very important in analysing the mindset of the people and in evaluating the significance of implemented changes and in implementing new changes. The current study aims at analysing the various impacts of Covid 19 on the people residing at the Greater Chennai corporation circle.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Arif Dwi Santoso

Seawater contains high amounts of organic material and ions causing high salinity.The distribution of nutrients in the ocean is determined by ocean circulation, biological processes of uptake and mineralization, and subsequent regeneration of nutrients by migration of animals and by supply from the land.Topic related to sea water is important to discuss and to be a challenging with many researchers in Indonesia. In this paper, organic mater from sea water was learned in detail. The information contained of formulation history, justifi cation, distribution, advantages, and method of measure, type and effect to environment.Keywords: organic material, sea water, dissolved


Sign in / Sign up

Export Citation Format

Share Document