Bulk solid handling

2022 ◽  
pp. 473-493
Author(s):  
Moe Toghraei
Keyword(s):  
Author(s):  
Nathan A. Prisco ◽  
Arthur C. Pinon ◽  
Lyndon Emsley ◽  
Bradley F. Chmelka

Quantitative scaling analyses based on mass and energy transport analogies enable rate-limiting processes to be established in hyperpolarization transfer phenomena.


Author(s):  
I Bridle ◽  
S R Woodhead

Degradation of bulk solid product during pneumatic conveying is of concern in a range of process industries. However, prediction of product degradation levels at the conveyor design stage has proved challenging. This paper presents a proposed prediction technique, based on the use of a pilot-sized test facility to provide relevant empirical data. The results of experiments undertaken using malted barley, basmati rice, and granulated sugar are reported. For each bulk solid material, a wide range of conveying conditions have been examined, consistent with common industrial practice. Correlations between predictions and experimental data obtained in an industrial-scale conveyor are presented and discussed.


2018 ◽  
Vol 9 (36) ◽  
pp. 7277-7286 ◽  
Author(s):  
Anna M. Majcher ◽  
Paweł Dąbczyński ◽  
Mateusz M. Marzec ◽  
Magdalena Ceglarska ◽  
Jakub Rysz ◽  
...  

A new material combining polymers and magnetic relaxations both in the bulk solid solution and in the thin film form.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A-Young Kim ◽  
Florian Strauss ◽  
Timo Bartsch ◽  
Jun Hao Teo ◽  
Jürgen Janek ◽  
...  

AbstractWhile still premature as an energy storage technology, bulk solid-state batteries are attracting much attention in the academic and industrial communities lately. In particular, layered lithium metal oxides and lithium thiophosphates hold promise as cathode materials and superionic solid electrolytes, respectively. However, interfacial side reactions between the individual components during battery operation usually result in accelerated performance degradation. Hence, effective surface coatings are required to mitigate or ideally prevent detrimental reactions from occurring and having an impact on the cyclability. In the present work, we examine how surface carbonates incorporated into the sol–gel-derived LiNbO3 protective coating on NCM622 [Li1+x(Ni0.6Co0.2Mn0.2)1–xO2] cathode material affect the efficiency and rate capability of pellet-stack solid-state battery cells with β-Li3PS4 or argyrodite Li6PS5Cl solid electrolyte and a Li4Ti5O12 anode. Our research data indicate that a hybrid coating may in fact be beneficial to the kinetics and the cycling performance strongly depends on the solid electrolyte used.


2012 ◽  
Vol 6 (1) ◽  
pp. 33-37
Author(s):  
Changbing Chen

With the increasing volume demand of silos, squat silo diameters are bigger and bigger. However, present wall pressure computation methods are mostly based on small diameter silos. To solve this problem, systematical research on the wall pressure in squat silos is of great importance. For now, in the Chinese code the wall pressure computation methods are based on the limit equilibrium theory to be calculated, which define the orientation of the failure plane in the bulk solid within the silo. The rupture angle is a key parameter to silos’ wall pressure. Therefore the value and direction of rupture angle are researched by theoretical method in this paper, which has heavy significance and provide an important basis for the large diameter silo design.


2012 ◽  
Vol 45 (4) ◽  
pp. 15-27 ◽  
Author(s):  
I. Valaei ◽  
S.R. Hassan-Beygi ◽  
M.H. Kianmehr ◽  
J. Massah

Abstract The world’s dependence on chemical fertilizer as the primary source for enriching agricultural fields is continually increasing that cause nature pollution. This has led researchers to aggressively investigate renewable fertilizer resources, biomass, to produce organic crops and reduced wastage. Poultry litter is a bulk solid and biomass feed stocks. Flow behavior of bulk solid is a critical factor in designing and developing suitable equipments (e.g. pelletizing machine). The bulk density, tap density, Carr’s index and powder avalanche time technique were applied to evaluate the flow properties of poultry litter. The experiments were carried out at moisture content (10, 20 and 30% w.b.), particle size (0.3, 0.6 and 1.18 mm) for the bulk and tap densities as well as Carr’s index. In addition to the moisture content (10, 20 and 30 %w.b.) and particle size (0.3, 0.6 and 1.18 mm) the rotational speed of drum (0.5, 1 and1.5 rpm) were also investigated for the avalanche time. The results showed that with increasing moisture content Carr’s index increased significantly (P<0.01) in the ranges of 16.2% to 18.5% and with increasing particle size the Carr’s index decreased from 20.35% to 14.78%. The litter powder avalanche time (AT) increased significantly (P<0.01) with increasing moisture content and decreasing rotational speed and particle size. The bulk and tap densities of the litter powder was decreased with increasing moisture content and increasing the particle size. The bulk and tap densities of the driest and finest poultry litter sample were higher than other ones.


2018 ◽  
Vol 21 (16) ◽  
pp. 2518-2533
Author(s):  
Stefan Lyubomirov Pantaleev ◽  
Stefanos-Aldo Papanicolopulos ◽  
Jin Yeam Ooi

Current theories and design codes pertaining to storage structures for bulk solids have been developed in the context of rigid-walled silos and may not be applicable for smaller and highly flexible containers that are often used for industrial packaging and intermediate storage. The focus of this study is to investigate the effect of wall flexibility on the bulk stresses and wall pressures during storage using finite element analysis. The results show that when the wall stiffness is low, the computed bulk stresses in the vertical bin section are dominated by plasticity, while the stresses in the hopper section remain in the elastic state. In this situation, the wall pressure in the bin section is heavily influenced by the strength of the stored solid, which controls the extent of plastic flow. Overall, the normal wall pressure in the bin section is found to decrease with wall flexibility leading to a corresponding increase in vertical stress in the stored solid. As a consequence, the stresses in the hopper also increase leading to increasing loads on the hopper walls and potential exacerbation of handling issues for cohesive materials in highly flexible containers.


2018 ◽  
Vol 6 (10) ◽  
pp. 4394-4404 ◽  
Author(s):  
Prabhat Prakash ◽  
Jordan Aguirre ◽  
Megan. M. Van Vliet ◽  
Parameswara Rao Chinnam ◽  
Dmitriy A. Dikin ◽  
...  

A nanolayer of surface liquid phase in equilibrium with the bulk solid is responsible for the low grain boundary resistance in the solid electrolyte LiCl·DMF, as supported by a combination of experiment, theory, and modelling.


Sign in / Sign up

Export Citation Format

Share Document