scholarly journals Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics

2021 ◽  
Vol 60 (3) ◽  
pp. 3047-3056 ◽  
Author(s):  
Farwa Haider ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Muhammad Jawad ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractThis work investigates numerically the solution of Darcy–Forchheimer flow for hybrid nanofluid by employing the slip conditions. Basically, the fluid flow is produced by a swirling disk and is exposed to thermal stratification along with non-linear thermal radiation for controlling the heat transfer of the flow system. In this investigation, the nanoparticles of titanium dioxide and aluminum oxide have been suspended in water as base fluid. Moreover, the Darcy–Forchheimer expression is used to characterize the porous spaces with variable porosity and permeability. The resulting expressions of motion, energy and mass transfer in dimensionless form have been solved by HAM (Homotopy analysis method). In addition, the influence of different emerging factors upon flow system has been disputed both theoretically in graphical form and numerically in the tabular form. During this effort, it has been recognized that velocities profiles augment with growing values of mixed convection parameter while thermal characteristics enhance with augmenting values of radiation parameters. According to the findings, heat is transmitted more quickly in hybrid nanofluid than in traditional nanofluid. Furthermore, it is estimated that the velocities of fluid $$f^{\prime}\left( \xi \right),g\left( \xi \right)$$ f ′ ξ , g ξ are decayed for high values of $$\phi_{1} ,\phi_{2} ,\,Fr$$ ϕ 1 , ϕ 2 , F r and $$k_{1}$$ k 1 factors.


2021 ◽  
Author(s):  
F.M Alharbi ◽  
Muhammad Jawad ◽  
Muhammad Zubair ◽  
Muhammad Naeem ◽  
Ibn-i- Amin ◽  
...  

Abstract In this study, we consider the magnetohydrodynamics mixed convective couple stress hybrid nanofluid Darcy-Forchheimer flow through a rotating porous space with velocity slip condition. The nonlinear thermal stratification and thermal radiation of Magnetohydrodynamics (MHD) are discussed in detail. For relative analysis, we have taken the nanoparticals samples of Aluminum oxides (Al2O3) and Titanium dioxide (TiO2). The rotation in the disk is produces for the generation of the flow in the system.Furthermore, the variable permeability and porosity of porous space is regarded as Darcy-Forchheimer expression. The resulting nonlinear system of ODE’s are solved by Homotopy Analysis Method (HAM). The governing of several sundry parameters i.e. “Couple Stress, coefficient of inertia, radiation parameter, magnetic parameter, Prandtl number, heat source or sink parameter” are presented both graphically as well as in numerical tables. The behavior of the flow predicted that the increase of both mixed convection and couple stress parameters cause increase in the momentum profile. Temperature of the system rises for higher values of radiation parameter and magnetic parameter. The higher local heat transfer rate of Aluminum oxides (Al2O3) and Titanium oxide (TiO2)or water is examined as compared to hybrid nanofluid.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0249434
Author(s):  
Anwar Saeed ◽  
Wajdi Alghamdi ◽  
Safyan Mukhtar ◽  
Syed Imad Ali Shah ◽  
Poom Kumam ◽  
...  

The present article provides a detailed analysis of the Darcy Forchheimer flow of hybrid nanoliquid past an exponentially extending curved surface. In the porous space, the viscous fluid is expressed by Darcy-Forchheimer. The cylindrical shaped carbon nanotubes (SWCNTs and MWCNTs) and Fe3O4 (iron oxide) are used to synthesize hybrid nanofluid. At first, the appropriate similarity transformation is used to convert the modeled nonlinear coupled partial differential equations into nonlinear coupled ordinary differential equations. Then the resulting highly nonlinear coupled ordinary differential equations are analytically solved by the utilization of the “Homotopy analysis method” (HAM) method. The influence of sundry flow factors on velocity, temperature, and concentration profile are sketched and briefly discussed. The enhancement in both volume fraction parameter and curvature parameter k results in raises of the velocity profile. The uses of both Fe3O4 and CNTs nanoparticles are expressively improving the thermophysical properties of the base fluid. Apart from this, the numerical values of some physical quantities such as skin friction coefficients, local Nusselt number, and Sherwood number for the variation of the values of pertinent parameters are displayed in tabular forms. The obtained results show that the hybrid nanofluid enhances the heat transfer rate 2.21%, 2.1%, and 2.3% using the MWCNTs, SWCNTs, and Fe3O4 nanomaterials.


2019 ◽  
Vol 29 (9) ◽  
pp. 3394-3416 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Ahmed Alsaedi ◽  
Salman Ahmad ◽  
Tasawar Hayat

Purpose This paper aims to examine squeezing flow of hybrid nanofluid inside the two parallel rotating sheets. The upper sheet squeezes downward, whereas the lower sheet stretches. Darcy’s relation describes porous space. Hybrid nanofluid consists of copper (Cu) and titanium oxide (TiO2) nanoparticles and water (H2O). Viscous dissipation and thermal radiation in modeling are entertained. Entropy generation analysis is examined. Design/methodology/approach Transformation procedure is implemented for conversion of partial differential systems into an ordinary one. The shooting scheme computes numerical solution. Findings Velocity, temperature, Bejan number, entropy generation rate, skin friction and Nusselt number are discussed. Key results are mentioned. Velocity field increases vs higher estimations of squeezing parameter, while it declines via larger porosity variable. Temperature of liquid particles enhances vs larger Eckert number. It is also examined that temperature field dominates for TiO2-H2O, Cu-H2O and Cu-TiO2-H2O. Magnitude of heat transfer rate and skin friction coefficient increase against higher squeezing parameter, radiative parameter, porosity variable and suction parameter. Originality/value The originality of this paper is investigation of three-dimensional time-dependent squeezing flow of hybrid nanomaterial between two parallel sheets. To the best of the authors’ knowledge, no such consideration has been carried out in the literature.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 593 ◽  
Author(s):  
Mikhail A. Sheremet ◽  
Dalia Sabina Cimpean ◽  
Ioan Pop

A problem with the thermogravitational energy transference of a hybrid nanofluid (Al2O3-SiO2/H2O) in a porous space with a central heat-conducting body has been presented and numerical analysis has been performed. Governing equations, transformed in terms of non-dimensional parameters, have been solved by a developed numerical algorithm based on the finite difference technique. The behavior of streamlines and isotherms was investigated, and the impact of various important characteristics is discussed. The variation in the average and local Nusselt numbers was studied; by selecting various appropriate nano-sized particle combinations in hybrid nanosuspension, the desired energy transport strength could be obtained. The results were compared and successfully validated with previous reported numerical and experimental data from the literature.


2018 ◽  
Vol 28 (12) ◽  
pp. 2895-2915 ◽  
Author(s):  
Tasawar Hayat ◽  
Arsalan Aziz ◽  
Taseer Muhammad ◽  
Ahmed Alsaedi

Purpose The aim of this study is to elaborate three dimensional rotating flow of nanoliquid induced by a stretchable sheet subject to Darcy–Forchheimer porous space. Thermophoretic diffusion and random motion aspects are retained. Prescribed surface heat flux and prescribed surface mass flux conditions are implemented at stretchable surface. Convergent series solutions have been derived for velocities, temperature and concentration. Design/methodology/approach Optimal homotopy analysis method is implemented for the solution development. Findings The current solution demonstrates very good agreement with those of the previously published studies in the special cases of regular fluid and nanofluids. Graphical results are presented to investigate the influences of the titania and copper nanoparticle volume fractions and also the nodal/saddle indicative parameter on flow and heat transfer characteristics. Here, the thermal characteristics of hybrid nanofluid are found to be higher in comparison to the base fluid and fluid containing single nanoparticles, respectively. An important point to note is that the developed model can be used with great confidence to study the flow and heat transfer of hybrid nanofluids. Originality/value To the best of the authors’ knowledge, no such consideration has been given in the literature yet.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 89
Author(s):  
Muhammad Adil Sadiq ◽  
Farwa Haider ◽  
Tasawar Hayat

Salient features of hybrid nanofluid (MoS2-SiO2/water) for Darcy–Forchheimer–Brinkman porous space with variable characteristics is examined. Heat transfer analysis subject to viscous dissipation, nonlinear thermal radiation, and heat generation/absorption is carried out. Disturbance inflow is created by an exponentially stretching curved sheet. Relevant equations are simplified by employing boundary layer theory. Adequate transformations lead to a set of dimensionless equations. Velocity, temperature, and entropy generation rate are analyzed graphically. Comparative results are obtained for hybrid (MoS2-SiO2/water) and nanofluid (MoS2-water and SiO2-water). Physical quantities are analyzed through numerical data.


Sign in / Sign up

Export Citation Format

Share Document