Nitrogen-15 labelling and tracing techniques reveal cover crops transfer more fertilizer N to the soil reserve than to the subsequent crop

2021 ◽  
Vol 313 ◽  
pp. 107359
Author(s):  
Maude Langelier ◽  
Martin H. Chantigny ◽  
Denis Pageau ◽  
Anne Vanasse
1985 ◽  
Vol 105 (1) ◽  
pp. 1-7 ◽  
Author(s):  
R. De ◽  
M. A. Salim Khan ◽  
M. S. Katti ◽  
V. Raja

SUMMARYExperiments made with winter fodder crops, lucerne (Medicago sativa), berseem (Trifolium alexandrinum) and oats (Avena sativa) and summer fodder crops, cow pea (Vigna unguiculata), guar (Cyamopsis tetragonoloba), sunhemp (Crotolaria juncea) and pearl millet (Pennisetum americanum) showed that a sequential crop of Sudan grass yielded more after the legumes than after the cereal fodders, oats or pearl millet. The legume advantage was noted in the crop not given fertilizers but also when Sudan grass was given N fertilizer. The yield increase in Sudan grass grown after legumes was equivalent to 32–60 kg fertilizer N/ha applied to Sudan grass following pearl millet.After harvesting the legumes more available N and NO3-N was present in the soil and the apparent recovery of fertilizer N by a subsequent crop was increased by the legume.


1991 ◽  
Vol 42 (5) ◽  
pp. 735 ◽  
Author(s):  
JF Angus ◽  
RA Fischer

Dryland wheat was fertilized with ammonium nitrate or liquid urea-ammonium nitrate at the time of sowing or about 3 months later (generally at the terminal-spikelet stage) on a well-drained site near Harden on the south-west slopes of New South Wales. The experiments continued from the second to the fifth year (1981-1984) of the cropping phase of a crop-pasture rotation. The maximum agronomic efficiencies for yield in the four consecutive years were 19, 4, 23 and 25 kg grain per kg of applied nitrogen (N). The three large responses were obtained in wetter than average seasons and the small response was obtained during drought. In the last three years of the study the yield response to nitrogen at the terminal-spikelet stage was found to be close to but slightly less than that for N applied at sowing. In those years the agronomic efficiencies for the late-applied N were 0, 22 and 22. The apparent recovery of fertilizer N in the above-ground parts of the crop at maturity was up to 70% of the fertilizer applied in the year of sowing, and, after the drought during which there was little uptake of fertilizer N, up to 62% by the subsequent crop. The fertilizer efficiencies in the non-drought years were higher than generally reported in south-eastern Australia, and indicate potential for profitable delayed application of N fertilizer to wheat. Grain-protein responses were variable from year to year and are discussed against a simple theoretical background of the amount of N applied and grain-yield response.


Author(s):  
David Sotomayor-Ramírez ◽  
Randy Huckaba ◽  
Ricky Barnes ◽  
Ronald Dorcinvil ◽  
Jesús Espinosa

Maize (Zea mays L.) inbred seed production fields on the southern semiarid coast of Puerto Rico are usually fallow each year from May to September. Inbreds have lower seed yields than single-cross hybrids, yet producers tend to apply high fertilizer nitrogen (N) levels in efforts to increase yields. Inbred maize response to fertilizer-N was evaluated on the southern semiarid coast of Puerto Rico in a cover crop-maize cropping sequence in 2009, and in a fallow-maize sequence in 2010 in a Fluventic Haplustoll. In general, maize produced after a legume cover crop of velvetbean (Mucuna prurience) or cowpea (Vigna unguiculata 'Iron Clay') had better yields and agronomic traits than maize after the fallow treatment. In 2009, maximum seed yields of 2,726 kg/ha were obtained with fertilizer-N application in the range of 112 to 224 kg N/ha. In 2010, maximum seed yields of 1,447 kg/ha were obtained with fertilizer-N application in the range of 84 to 211 kg N/ha. Harvest index was 0.26 and 0.27 in 2009 and 2010 for all fertilizer-N treatments; higher than that for unfertilized maize. In general, agronomic traits were superior as a result of fertilizer-N application without consistent differences among fertilizer-N levels applied. The SPAD chlorophyll meter, leaf color index and leaf area index were suitable indicators of N status in the maize plants. Highest N use efficiencies were observed for the 112 kg N/ha and 84 kg N/ha fertilizer levels for 2009 and 2010, respectively, and decreased with increasing fertilizer-N applied. Fertilizer-N rates in soils, climatic systems, and maize inbreds similar to the ones tested should be between 84 and 112 kg N/ha. Greater amounts of fertilizer-N will result in decreased economic benefit and potential environmental contamination. 


1991 ◽  
Vol 6 (2) ◽  
pp. 71-82 ◽  
Author(s):  
D. L. Karlen ◽  
J. W. Doran

AbstractCombining cover crops and conservation tillage may result in more sustainable agricultural production practices. Objectives of this on-farm study were to quantify effects of cover crops on growth and nitrogen accumulation by soybean [Glycine max (L.) Merr,] and corn (Zea mays L.) on a Nicollet loam (fine-loamy, mixed, mesic Aquic Hapludoll) near Boone, Iowa, Our farmer-cooperator planted soybean in 1988 using ridge tillage into an undisturbed strip with a hairy vetch (Vicia villosa L. Roth) cover crop and into a strip where previous crop residue and a negligible amount of cover crop had been incorporated by autumn and spring disking. In each strip, we established four plots for soil and plant measurements. Our cooperator planted corn on the same strips in 1989 into a cover crop that consisted of both hairy vetch and winter rye (Secale cereale L.). We determined the source of N accumulated by the corn by applying 67 kg N/ha of 15N depleted NH4NO3 fertilizer. In the absence of cover crops, early season soil NO3-N levels in the top 30 cm were higher, and corn growth and N accumulation were more rapid. At harvest, the corn grain, stover, and cob together accounted for 36 and 39 percent of the 15N fertilizer for the ridge tillage and disked treatments, respectively. We suggest that lower net mineralization of organic matter or greater denitrification losses before planting reduced the availability of soil N, This created an early season Nstress in corn grown with cover crops that was not overcome by broadcast fertilizer N applied three weeks after planting. Our on-farm research study has helped focus continuing efforts to determine if non-recovered fertilizer N is being immobilized in microbial biomass, lost by denitrification, or leached below the plant root zone.


Author(s):  
Anna C. Lanna ◽  
Mariana A. Silva ◽  
Alécio S. Moreira ◽  
Adriano S. Nascente ◽  
Marta C. C. de Fillipi

HIGHLIGHTS Multifunctional microorganisms promote the nutrient enrichment in Crotalaria plants. Cover crop residues are vital in managing soil fertility. Nutritionally improved cover crops increase soil nutrient levels for the subsequent crop.


2000 ◽  
Vol 135 (2) ◽  
pp. 139-149 ◽  
Author(s):  
A. BHOGAL ◽  
A. D. ROCHFORD ◽  
R. SYLVESTER-BRADLEY

The effects of eight rates of nitrogen (N) application (0–245 kg/ha) on the performance of winter wheat over five seasons (1991–1995) on a long-term field experiment (established 1978) at Ropsley (UK) are described. In each of the five seasons, N was withdrawn from replicate plots in order to study the residual effect of fertilizer. N applications in excess of 140 kg/ha left significant residues as soil mineral N (SMN) in the autumn which, despite some loss over-winter, had a significant effect on the yield and N offtake of the subsequent crop. The amount of N carried over was equivalent to 8–20% of the fertilizer N and was observed at N applications up to 40 kg/ha lower than the optimum rate (c. 200 kg/ha). Part of the unrecovered N was also considered to contribute to the long-term build-up of fertility at the site. The results suggest that restrictions on N use to below the optimum will reduce leachable N, but may have an impact on soil fertility and future crop productivity. In addition, the rate of N applied to preceding crops should be taken into account when formulating fertilizer advice on retentive soils.


2017 ◽  
Vol 68 (11) ◽  
pp. 1060 ◽  
Author(s):  
B. Ćupina ◽  
S. Vujić ◽  
Dj. Krstić ◽  
Z. Radanović ◽  
R. Čabilovski ◽  
...  

Winter cover crops may provide different environmental benefits in agricultural systems. The aim of this study was to determine the effect of cover crops used as green manure on the soil nitrogen (N) budget and yield of silage maize (Zea mays L.). A field experiment was conducted between 2011 and 2013 at three locations in Vojvodina Province, Serbia. It compared common vetch (Vicia sativa L.), triticale (× Triticosecale Wittm. ex A. Camus), their mixture grown as cover crops, N fertilisation at two doses (N1 and N2), and an unfertilised fallow as a control. Cover crops were sown in autumn 2011 and 2012 and were ploughed in during May of the year after which silage maize was sown. Results show that the ability of cover crops to provide benefit for a subsequent crop is highly related to weather conditions, mainly precipitation. The two years of the study experienced completely different weather conditions, showing two aspects of how cover crops can affect subsequent crop yield and amount of N left in the soil. In 2012, the N budget was higher in all three cover crops at all locations than N1 and the control because of unfavourable weather conditions for mineralisation of organic matter. However, the cover crops had a negative effect on silage maize yield. In 2013 (an average year), the N budget was significantly higher after cover crops, and was followed by a higher yield of silage maize. Based on the 2-year average, the highest value of apparent N remaining in the soil was recorded in the mixture treatment (288.13 kg N ha–1); treatments with vetch and triticale had approximately equal values (272.17 and 272.71 kg N ha–1). The N fertilisation treatments and the control had significantly lower average values of residual N.


1991 ◽  
Vol 6 (3) ◽  
pp. 106-113 ◽  
Author(s):  
Preston G. Sullivan ◽  
David J. Parrish ◽  
John M. Luna

AbstractWinter annual legume cover crops can reduce nitrogen (N) fertilizer requirements and provide a water-conserving mulch to a subsequent crop. A two-year study was designed to test cover crops of rye (Secale cereale L.), hairy vetch (Vicia villosa Roth), and big/lower vetch (Vicia grandiflora Scopoli) for their ability to produce N and to conserve soil water for a succeeding corn (Zea mays L.) crop. We measured the cover crops' biomass, N yield, carbon (C) to N ratio, and influence on a subsequent corn crop grown under two tillage regimes (disk tillage or no-till). Nitrogen content in cover crop biomass at time of corn planting ranged from 37 to 187 kg/ha. Pure stands of hairy vetch and a mixture of hairy vetch plus bigflower vetch had generally higher N yields, and rye was lowest. Rye growing in association with hairy vetch had lower C:N ratios than rye growing alone. Legume C:N ratios remained generally unchanged from earlier (disked) to later (herbicide) kill dates, but total N and biomass typically increased in the last 2 to 3 weeks before corn planting. Soil water retention was affected by tillage in some cases; no-till was superior to disk incorporation in each case where there was a tillage effect. Cover crops with greater biomass resulted in greater soil water retention. Among cover crops, uptake ofNby corn was greater from hairy vetch or hairy vetch plus bigflower vetch mixture. Biological immobilization of N appeared to be reducing N uptake by corn grown in rye residues. Corn in nonlegume plots fertilized with 140 or 210 kg N/ha took up more N than corn following legumes, but there was no corresponding yield increase. Corn biomass yields following the cover crops ranged from 8.6 to 18.0 Mg/ha with no additional fertilizer N. In the second year of the study, average corn yields following hairy vetch (15.3 Mg/ha) or hairy-bigflower vetch mixtures (16.4 Mg/ha) were not statistically different from corn yields produced by a 140 kg N/ha fertilizer rate (17.4 Mg/ha). These results suggest N from a legume cover crop can replace or substantially reduce fertilizer N requirements in corn production systems in the Appalachian region.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 664-668 ◽  
Author(s):  
John Z. Burket ◽  
Delbert D. Hemphill ◽  
Richard P. Dick

Cover crops hold potential to improve soil quality, to recover residual fertilizer N in the soil after a summer crop that otherwise might leach to the groundwater, and to be a source of N for subsequently planted vegetable crops. The objective of this 5-year study was to determine the N uptake by winter cover crops and its effect on summer vegetable productivity. Winter cover crops [red clover (Trifolium pratense L.), cereal rye (Secale cereale L. var. Wheeler), a cereal rye/Austrian winter pea (Pisum sativum L.) mix, or a winter fallow control] were in a rotation with alternate years of sweet corn (Zea mays L. cv. Jubilee) and broccoli (Brassica oleracea L. Botrytis Group cv. Gem). The subplots were N rate (zero, intermediate, and as recommended for vegetable crop). Summer relay plantings of red clover or cereal rye were also used to gain early establishment of the cover crop. Cereal rye cover crops recovered residual fertilizer N at an average of 40 kg·ha-1 following the recommended N rates, but after 5 years of cropping, there was no evidence that the N conserved by the cereal rye cover crop would permit a reduction in inorganic N inputs to maintain yields. Intermediate rates of N applied to summer crops in combination with winter cover crops containing legumes produced vegetable yields similar to those with recommended rates of N in combination with winter fallow or cereal rye cover crops. There was a consistent trend (P < 0.12) for cereal rye cover crops to cause a small decrease in broccoli yields as compared to winter fallow.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6403 ◽  
Author(s):  
Masao Higo ◽  
Yuya Tatewaki ◽  
Kento Gunji ◽  
Akari Kaseda ◽  
Katsunori Isobe

BackgroundUnderstanding the role of communities of arbuscular mycorrhizal fungi (AMF) in agricultural systems is imperative for enhancing crop production. The key variables influencing change in AMF communities are the type of cover crop species or the type of subsequent host crop species. However, how maize and soybean performance is related to the diversity of AMF communities in cover cropping systems remains unclear. We therefore investigated which cover cropping or host identity is the most important factor in shaping AMF community structure in subsequent crop roots using an Illumina Miseq platform amplicon sequencing.MethodsIn this study, we established three cover crop systems (Italian ryegrass, hairy vetch, and brown mustard) or bare fallow prior to planting maize and soybean as cash crops. After cover cropping, we divided the cover crop experimental plots into two subsequent crop plots (maize and soybean) to understand which cover cropping or host crop identity is an important factor for determining the AMF communities and diversity both in maize and soybeans.ResultsWe found that most of the operational taxonomic units (OTUs) in root samples were common in both maize and soybean, and the proportion of common generalists in this experiment for maize and soybean roots was 79.5% according to the multinomial species classification method (CLAM test). The proportion of OTUs specifically detected in only maize and soybean was 9.6% and 10.8%, respectively. Additionally, the cover cropping noticeably altered the AMF community structure in the maize and soybean roots. However, the differentiation of AMF communities between maize and soybean was not significantly different.DiscussionOur results suggest cover cropping prior to planting maize and soybean may be a strong factor for shaping AMF community structure in subsequent maize and soybean roots rather than two host crop identities. Additionally, we could not determine the suitable rotational combination for cover crops and subsequent maize and soybean crops to improve the diversity of the AMF communities in their roots. However, our findings may have implications for understanding suitable rotational combinations between cover crops and subsequent cash crops and further research should investigate in-depth the benefit of AMF on cash crop performances in cover crop rotational systems.


Sign in / Sign up

Export Citation Format

Share Document