Vegetable processing wastes addition to improve swine manure anaerobic digestion: Evaluation in terms of methane yield and SEM characterization

2012 ◽  
Vol 91 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Beatriz Molinuevo-Salces ◽  
Cristina González-Fernández ◽  
Xiomar Gómez ◽  
María Cruz García-González ◽  
Antonio Morán
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sheng Zhou ◽  
Jining Zhang ◽  
Guoyan Zou ◽  
Shohei Riya ◽  
Masaaki Hosomi

To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20:1 and 30:1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.


2014 ◽  
Vol 878 ◽  
pp. 473-480 ◽  
Author(s):  
Jin Rong Qiu ◽  
Yun Long Fu ◽  
Qing Yun Liu ◽  
Shun Yi Li ◽  
Hai Jun Peng ◽  
...  

The Gannan region is the largest navel orange planting area in the world and has the largest production in China. However, about 5 million tons of navel orange waste (NOW) produced annually. NOW has a great environmental risk because of its high content of organic matter and moisture. Anaerobic digestion of NOW with high nitrogen content waste is a promising alternative to treat these wastes. The effect of swine manure (SM), waste active sludge (WAS) as co-substrates and different mixing ratio were examined in three batch-scale studies. In the first investigation, co-digestion of NOW with SM resulted low methane yield and high concentration of VFAs. In the second investigation, NOW was co-digested with WAS, the methane yield was improved by 260% when the mixing ratio of NOW to WAS (VS/VS) was shifted from 1:2 to 2:1. In the third investigation, the co-digestion of NOW with SM and WAS was conducted. Co-digestion of three substrates has higher methane yield than that of previous two studies, with the exception of equal amounts of NOW with co-substrates (mixing ratio of NOW to SM to WAS was 2:1:1). The highest methane yield of all experiments was 0.20 m3 kg-1VS added while the mixing ratio of NOW to SM to WAS was 1:2:1. It seemed to obtain stable digestion performance, the mixing ratio of co-substates to NOW should not be lower than 1:1. WAS was a better co-substrate than SM, as WAS was capable to supply more organic nitrogen to create positive synergistic effects.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2469 ◽  
Author(s):  
Chrysoula Mirtsou-Xanthopoulou ◽  
Ioannis V. Skiadas ◽  
Hariklia N. Gavala

(1) Background: The continuously increasing demand for renewable energy sources renders anaerobic digestion as one of the most promising technologies for renewable energy production. Due to the animal production intensification, manure is being used as the primary feedstock for most biogas plants. Their economical profitable operation, however, relies on increasing the methane yield from the solid fraction of manure, which is not so easily degradable. The solid fraction after anaerobic digestion, the so-called digested fibers, consists mainly of hardly biodegradable material and comes at a lower mass per unit volume of manure compared to the solid fraction before anaerobic digestion. Therefore, investigation on how to increase the biodegradability of digested fibers is very relevant. So far, Aqueous Ammonia Soaking (AAS), has been successfully applied on digested fibers separated from the effluent of a manure-fed, full-scale anaerobic digester to enhance their methane productivity in batch experiments. (2) Methods: In the present study, continuous experiments at a mesophilic (38 °C) CSTR-type anaerobic digester fed with swine manure first and a mixture of manure with AAS-treated digested fibers in the sequel, were performed. Anaerobic Digestion Model 1 (ADM1) previously fitted on manure fed digester was used in order to assess the effect of the addition of AAS-pre-treated digested manure fibers on the kinetics of anaerobic digestion process. (3) Results and Conclusions: The methane yield of AAS-treated digested fibers under continuous operation was 49–68% higher than that calculated in batch experiments in the past. It was found that AAS treatment had a profound effect mainly on the disintegration/hydrolysis rate of particulate carbohydrates. Comparison of the data obtained in the present study with the data obtained with AAS-pre-treated raw manure fibers in the past revealed that hydrolysis kinetics after AAS pre-treatment were similar for both types of biomasses.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 787
Author(s):  
Anna Lymperatou ◽  
Niels B. Rasmussen ◽  
Hariklia N. Gavala ◽  
Ioannis V. Skiadas

Swine manure mono-digestion results in relatively low methane productivity due to the low degradation rate of its solid fraction (manure fibers), and due to the high ammonia and water content. The aqueous ammonia soaking (AAS) pretreatment of manure fibers has been proposed for overcoming these limitations. In this study, continuous anaerobic digestion (AD) of manure mixed with optimally AAS-treated manure fibers was compared to the AD of manure mixed with untreated manure fibers. Due to lab-scale pumping restrictions, the ratio of AAS-optimally treated manure fibers to manure was only 1/3 on a total solids (TS) basis. However, the biogas productivity and methane yield were improved by 17% and 38%, respectively, also confirming the predictions from a simplified 1st order hydrolysis model based on batch experiments. Furthermore, an improved reduction efficiency of major organic components was observed for the digester processing AAS-treated manure fibers compared to the non-treated one (e.g., 42% increased reduction for cellulose fraction). A preliminary techno-economic analysis of the proposed process showed that mixing raw manure with AAS manure fibers in large-scale digesters could result in a 72% increase of revenue compared to the AD of manure mixed with untreated fibers and 135% increase compared to that of solely manure.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


2020 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Rubén González ◽  
Judith González ◽  
José G. Rosas ◽  
Richard Smith ◽  
Xiomar Gómez

Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.


2016 ◽  
Vol 28 (5) ◽  
pp. 2741-2752 ◽  
Author(s):  
Tamás Rétfalvi ◽  
Piroska Szabó ◽  
Annamária-Tukacs Hájos ◽  
Levente Albert ◽  
Attila Kovács ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document