Effects of single and combined olive mill wastewater and olive mill pomace on the growth, reproduction, and survival of two earthworm species (Aporrectodea trapezoides, Eisenia fetida)

2021 ◽  
Vol 168 ◽  
pp. 104123
Author(s):  
Nawal Mekersi ◽  
Kenza Kadi ◽  
Silvia Casini ◽  
Dalila Addad ◽  
Kamel Eddine Bazri ◽  
...  
2021 ◽  
Vol 13 (4) ◽  
pp. 2376
Author(s):  
Dimitris P. Zagklis ◽  
Costas S. Papageorgiou ◽  
Christakis A. Paraskeva

Olive mill wastewater is an important agro-industrial waste with no established treatment method. The authors have developed a phenol separation method that could potentially cover the treatment cost of the waste. The purpose of this study was to identify any economic hotspots in the process, the operational cost and examine the margin of profit for such a process. The equipment cost was scaled for different treatment capacities and then used to estimate the fixed capital investment and the yearly operational cost. The highest purchased equipment cost was identified for the membrane filtration system, while the cost for resin replacement was identified as the highest operational cost. The lifespan of the resin used in the adsorption step was identified as an economic hot spot for the process, with the phenols separation cost ranging from 0.84 to 13.6 €/g of phenols for a resin lifespan of 5–100 adsorption/desorption cycles. The lifespan of the resin proved to be the single most important aspect that determines the phenols separation cost. The price range that was calculated for the product of the process is very promising because of the typical value of antioxidants and the low concentration of phenols that are needed for food supplements and cosmetics.


2021 ◽  
Vol 42 ◽  
pp. 100402
Author(s):  
Jacques Romain Njimou ◽  
John Godwin ◽  
Hugues Pahimi ◽  
S. Andrada Maicaneanu ◽  
Fridolin Kouatchie-Njeutcha ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 800
Author(s):  
Anna Maria Posadino ◽  
Annalisa Cossu ◽  
Roberta Giordo ◽  
Amalia Piscopo ◽  
Wael M Abdel-Rahman ◽  
...  

This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid–liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.


Author(s):  
Jehan Khalil ◽  
Hasan Habib ◽  
Michael Alabboud ◽  
Safwan Mohammed

AbstractOlive mill wastewater is one of the environmental problems in semiarid regions. The main goals of this study were to investigate the impacts of different olive mill wastewater levels on durum wheat (Triticum aestivum var. Douma1) production and soil microbial activities (i.e., bacteria and fungi). A pot experiment was conducted during the growing seasons 2015/2017 to evaluate the effect of three levels of olive mill wastewater on both growth and productivity attributes of wheat. Vertisol soil samples were collected from southern Syria. Two months before wheat cultivation, three levels of olive mill wastewater: T5 (5 L/m 2), T10 (10 L/m2) and T15 (15 L/m 2) were added to pots filled with the collected soil samples. Also, a control (T0) free of olive mill wastewater was considered as a reference. Results showed a significant increase (p < 0.05) in germination rate (%), plant height (cm), ear length (cm), kernels number, kernels weight per ear (g) and grain yield (g/m2) compared to control. However, T5 treatment did not induce a significant increase in terms of ear length, kernels weight per ear or yield (in the second season). On the other hand, T10 treatment had recorded the best results compared with the other two treatments (T5, T15). Similarly, the results showed a significant increase in the number of bacterial and fungi cells by increasing olive mill wastewater concentration. This research provides promising results toward using olive mill wastewater in an eco-friendly way under Syrian conditions.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1808
Author(s):  
Rosa Tundis ◽  
Carmela Conidi ◽  
Monica R. Loizzo ◽  
Vincenzo Sicari ◽  
Rosa Romeo ◽  
...  

Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).


1992 ◽  
Vol 27 (4) ◽  
pp. 231-237 ◽  
Author(s):  
R. Borja ◽  
A. Martin ◽  
R. Maestro ◽  
J. Alba ◽  
J.A. Fiestas

2021 ◽  
Vol 11 (3) ◽  
pp. 1293
Author(s):  
Ana Eusébio ◽  
André Neves ◽  
Isabel Paula Marques

Olive oil and pig productions are important industries in Portugal that generate large volumes of wastewater with high organic load and toxicity, raising environmental concerns. The principal objective of this study is to energetically valorize these organic effluents—piggery effluent and olive mill wastewater—through the anaerobic digestion to the biogas/methane production, by means of the effluent complementarity concept. Several mixtures of piggery effluent were tested, with an increasing percentage of olive mill wastewater. The best performance was obtained for samples of piggery effluent alone and in admixture with 30% of OMW, which provided the same volume of biogas (0.8 L, 70% CH4), 63/75% COD removal, and 434/489 L CH4/kg SVin, respectively. The validation of the process was assessed by molecular evaluation through Next Generation Sequencing (NGS) of the 16S rRNA gene. The structure of the microbial communities for both samples, throughout the anaerobic process, was characterized by the predominance of bacterial populations belonging to the phylum Firmicutes, mainly Clostridiales, with Bacteroidetes being the subdominant populations. Archaea populations belonging to the genus Methanosarcina became predominant throughout anaerobic digestion, confirming the formation of methane mainly from acetate, in line with the greatest removal of volatile fatty acids (VFAs) in these samples.


2020 ◽  
Vol 6 ◽  
pp. 161-167
Author(s):  
E. Domingues ◽  
F. Rodrigues ◽  
J. Gomes ◽  
M.J. Quina ◽  
S. Castro-Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document