scholarly journals A special technique for Recycling Folded Cascode OTA to improve DC gain, bandwidth, CMRR and PSRR in 90 nm CMOS process

2020 ◽  
Vol 11 (2) ◽  
pp. 329-342 ◽  
Author(s):  
Ghader Yosefi
2013 ◽  
Vol 389 ◽  
pp. 573-578
Author(s):  
Ming Xin Song ◽  
Yue Li ◽  
Meng Meng Xu

A high-gain folded cascode operational amplifier is presented. Structure of folded cascode operational amplifier and manual calculations are discussed in detail. Folded cascode structure for the input stage is adopted. Folded cascode structure can increase the gain and the value of PSRR. Folded cascode structure can also allow self-compensation at the output. The operational amplifier is designed in 0.35μm CMOS process with 5V power supply. The operational amplifier has high-gain and work steadily. The results of SPICE simulations are shown that the operational amplifier achieved dc gain of 110dB with unity-gain bandwidth of 74.3MHz and phase margin of 54.4 degree.


Author(s):  
Priti Gupta ◽  
Sanjay Kumar Jana

This paper deals with the designing of low-power transconductance–capacitance-based loop filter. The folded cascode-based operational transconductance amplifier (OTA) is designed in this paper with the help of quasi-floating bulk MOSFET that achieved the DC gain of 88.61[Formula: see text]dB, unity gain frequency of 97.86[Formula: see text]MHz and power consumption of 430.62[Formula: see text][Formula: see text]W. The proposed OTA is compared with the exiting OTA structure which showed 19.50% increase in DC gain and 15.11% reduction in power consumption. Further, the proposed OTA is used for the designing of transconductance–capacitance-based loop filter that has been operated at [Formula: see text]3[Formula: see text]dB cut-off frequency of 30.12[Formula: see text]MHz with the power consumption of 860.90[Formula: see text][Formula: see text]W at the supply voltage of [Formula: see text][Formula: see text]V. The transistor-level simulation has been done in 0.18[Formula: see text][Formula: see text]m CMOS process.


2020 ◽  
Vol 37 (4) ◽  
pp. 205-213
Author(s):  
Norhamizah Idros ◽  
Zulfiqar Ali Abdul Aziz ◽  
Jagadheswaran Rajendran

Purpose The purpose of this paper is to demonstrate the acceptable performance by using the limited input range towards lower open-loop DC gain operational amplifier (op-amp) of an 8-bit pipelined analog-to-digital converter (ADC) for mobile communication application. Design/methodology/approach An op-amp with folded cascode configuration is designed to provide the maximum open-loop DC gain without any gain-boosting technique. The impact of low open-loop DC gain is observed and analysed through the results of pre-, post-layout simulations and measurement of the ADC. The fabrication process technology used is Silterra 0.18-µm CMOS process. The silicon area by the ADC is 1.08 mm2. Findings Measured results show the differential non-linearity (DNL) error, integral non-linearity (INL) error, signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) are within −0.2 to +0.2 LSB, −0.55 LSB for 0.4 Vpp input range, 22 and 27 dB, respectively, with 2 MHz input signal at the rate of 64 MS/s. The static power consumption is 40 mW with a supply voltage of 1.8 V. Originality/value The experimental results of ADC showed that by limiting the input range to ±0.2 V, this ADC is able to give a good reasonable performance. Open-loop DC gain of op-amp plays a critical role in ADC performance. Low open-loop DC gain results in stage-gain error of residue amplifier and, thus, leads to nonlinearity of output code. Nevertheless, lowering the input range enhances the linearity to ±0.2 LSB.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450022
Author(s):  
XIAO ZHAO ◽  
HUAJUN FANG ◽  
JUN XU

A low power current recycling constant-gm rail-to-rail (RtR) OTA is presented. The proposed amplifier has the benefit of delivering the same performance while consuming half the power compared to the conventional RtR amplifier. This is achieved by recycling the bias current of idle devices, which results in an enhanced transconductance, gain and slew rate. The proposed amplifier was implemented in CSMC standard 0.18 um CMOS process. Simulation results show that the proposed amplifier achieves 10.2 MHz unity-gain bandwidth, 59.4 dB DC gain, 4.8 V/us slew rate and less than 8% deviation in transconductance, but the power consumption reduced by 50% compared to the conventional RtR amplifier with the same design specifications.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650144 ◽  
Author(s):  
Meysam Akbari ◽  
Omid Hashemipour

In this paper, a single-stage multi-path operational transconductance amplifier (OTA) with fast-settling response for high performance applications is designed. The produced amplifier uses current-shunt technique, double recycling structure, cross-coupled positive feedback configuration and all idle devices in the signal path to enhance transconductance of the conventional folded cascode (FC) amplifier. These transconductance boosting techniques lead to higher DC gain, gain bandwidth (GBW), slew rate and lower settling time compared to the previous FC structures while phase margin is degraded. Simulation results are presented using 90 nm CMOS technology which show 1,800% increment in GBW and a 33.2 dB DC gain improvement in the approximately same power consumption compared to the conventional FC amplifier.


2014 ◽  
Vol 614 ◽  
pp. 237-240
Author(s):  
Lin Feng Wang ◽  
Qiao Meng ◽  
Hao Zhi

This paper presents a high unity gain bandwidth fully differential folded-cascode operational amplifier using gain-boosted technique. The amplifier is designed in TSMC 0.18μm 1P6M CMOS technology. The unity-gain bandwidth (GBW) and poles of the gain-boosting amplifiers were carefully designed to improve the stability. The implemented design provides a direct current (DC) gain of around 93 dB with a unity gain frequency of 1.8GHz. It exhibits a DC gain larger than 88dB when the output common-mode voltage between 0.6 V and 1.2V. the overall layout size is 96μm×120μm.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1156
Author(s):  
Lorenzo Benvenuti ◽  
Alessandro Catania ◽  
Giuseppe Manfredini ◽  
Andrea Ria ◽  
Massimo Piotto ◽  
...  

The design of ultra-low voltage analog CMOS integrated circuits requires ad hoc solutions to counteract the severe limitations introduced by the reduced voltage headroom. A popular approach is represented by inverter-based topologies, which however may suffer from reduced finite DC gain, thus limiting the accuracy and the resolutions of pivotal circuits like analog-to-digital converters. In this work, we discuss the effects of finite DC gain on ultra-low voltage ΔΣ modulators, focusing on the converter gain error. We propose an ultra-low voltage, ultra-low power, inverter-based ΔΣ modulator with reduced finite-DC-gain sensitivity. The modulator employs a two-stage, high DC-gain, switched-capacitor integrator that applies a correlated double sampling technique for offset cancellation and flicker noise reduction; it also makes use of an amplifier that implements a novel common-mode stabilization loop. The modulator was designed with the UMC 0.18 μm CMOS process to operate with a supply voltage of 0.3 V. It was validated by means of electrical simulations using the CadenceTM design environment. The achieved SNDR was 73 dB, with a bandwidth of 640 Hz, and a clock frequency of 164 kHz, consuming only 200.5 nW. It achieves a Schreier Figure of Merit of 168.1 dB. The proposed modulator is also able to work with lower supply voltages down to 0.15 V with the same resolution and a lower power consumption despite of a lower bandwidth. These characteristics make this design very appealing in sensor interfaces powered by energy harvesting sources.


Sign in / Sign up

Export Citation Format

Share Document