Hepatic oval cell lines generate hepatocellular carcinoma following transfection with HBx gene and treatment with aflatoxin B1 in vivo

2011 ◽  
Vol 311 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Chang-Hai Li ◽  
Yan-Jun Wang ◽  
Wei Dong ◽  
Shuai Xiang ◽  
Hui-Fang Liang ◽  
...  
Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear. Methods qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18. Results circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression. Conclusion Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


2020 ◽  
Author(s):  
Jiantao Wang ◽  
Jinbiao Che

Abstract Background: Hepatocellular carcinoma (HCC) is the leading cause of tumor-related death worldwide due to high morbidity and mortality, yet lacking effective biomarkers and therapies. Circular RNAs (circRNAs) are a group of non-coding RNAs that regulate gene expression through interacting with miRNAs, implicating in the tumorigenesis and progression. A novel circRNA, circTP63, was reported to be an oncogene in HCC. However, its role in HCC remains unclear.Methods: qRT-PCR was used to assess the mRNA levels of CircTP63 in 90 pairs of tumor and adjacent normal tissues from HCC patients, one human normal hepatic epithelial cell line and HCC cell lines. CCK-8, colony formation, transwell, and flow cytometry assays were performed to detect the cellular function of circTP63/miR-155-5p/ZBTB18 in HCC cells. HCC xenograft mice models were established to assess the in vivo effect of circTP63. Bioinformatic analysis, RNA pull-down and luciferase assays were used to determine the interaction among circTP63/miR-155-5p/ZBTB18.Results: circTP63 was significantly upregulated in HCC tissues and cell lines. High circTP63 expression is closely associated with the tumor stages, lymph node metastasis, and poor prognosis of HCC patients. Functionally, knockdown of circTP63 inhibited cell proliferation, migration, invasion, and promoted cell apoptosis of HCC. Meanwhile, overexpression of circTP63 enhanced HCC progression. Mechanically, circTP63 was a sponge of miR-155-5p to facilitate the ZBTB18 expression, and the ZBTB18 expression in HCC tissues was negatively associated with the survival rate of HCC patients. Furthermore, rescued assays revealed that the reduced tumor-promoting effect on HCC cells induced by knockdown of circTP63 can be reversed by miR-155-5p inhibitor or ZBTB18 overexpression.Conclusion: Our data highlight a critical circTP63-miR-155-5p-ZBTB18 regulatory network involved in the HCC progression, gaining mechanistic insights into the function of circRNAs in HCC progression, and providing effective biomarkers and therapeutic targets for HCC treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuemei Li ◽  
Jike Hu ◽  
Baohong Gu ◽  
Maswikiti Ewetse Paul ◽  
Bofang Wang ◽  
...  

Abstract One of the most important and striking characteristics of hepatocellular carcinoma (HCC) with intrahepatic metastasis, is that it results in extremely poor prognosis. Animal models have become a fundamental and very useful in research for disease study. However, some limitation has arisen from these model systems. We have therefore established a model of HCC with intrahepatic metastasis and noticed some differential appearances in different HCC cell lines. Luciferase-transfected HCC cell lines MHCC97-H and PLC/PRF/5 were inoculated into SCID mice via spleen. Observation the intrahepatic metastasis by bioluminescence imaging in vivo and comparing of the differential formation of metastatic lesions between different HCC cell lines by incorporating physical anatomy was done. Animal models for HCC intrahepatic metastasis were well established. However, there were some clearly noticed differences between MHCC97-H and PLC/PRF/5 cell lines. The group of MHCC97-H cell line readily metastasis in the liver, whereas group PLC/PRF/5 cell line developed extensive intrahepatic metastasis and formed large tumor in situ in the spleen. MHCC97-H and PLC/PRF/5 cell lines can be used to successfully establish a model of HCC intrahepatic metastasis with distinctive characteristics, which provides an important direction for the study of the mechanism of HCC intrahepatic metastasis, and may hopefully provide a basis for clinical treatment.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Qing-An Jia ◽  
Zheng-Gang Ren ◽  
Yang Bu ◽  
Zhi-Ming Wang ◽  
Qiang-Bo Zhang ◽  
...  

We investigated the effect of Chinese herbal compound Song-you Yin on HCC stemness. MHCC97H and Hep3B cell lines were pretreated with SYY for 4 weeks, and their chemosensitivity to oxaliplatin was evaluated. The expression of CSC-related markers, cell invasion and migration, and colony formation were also examined. SYY-treated orthotopic nude mouse models of human HCC were developed to explore the effect of oxaliplatin on tumor growth, metastasis, and survival. The CSC-related molecular changesin vivowere also evaluated. The result showed that MHCC97H and Hep3B cells pretreated with SYY showed significantly increased chemosensitivity to oxaliplatin and the downregulation of CSC-related markers CD90, CD24, and EPCAM. SYY also attenuated cell motility, invasion, and colony formation in MHCC97H and Hep3B cell lines. The reduced tumorigenicity and pulmonary metastasis were observed in SYY-pretreated cell lines. Combination treatment with oxaliplatin and SYY significantly reduced tumor volume and pulmonary metastasis and prolonged survival compared with oxaliplatin treatment alone. Immunohistochemical analysis showed reduced expression of CD90, ABCG2, ALDH, CD44, EPCAM, vimentin, and MMP-9 and increased the expression of E-cadherin, in HCC cells following combination treatment. These data clearly demonstrate that SYY renders hepatocellular carcinoma sensitive to oxaliplatin through the inhibition of stemness.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1878 ◽  
Author(s):  
Sami Znati ◽  
Rebecca Carter ◽  
Marcos Vasquez ◽  
Adam Westhorpe ◽  
Hassan Shahbakhti ◽  
...  

Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models. Methods: Vandetanib and radiation treatment were combined in HCC cell lines grown in vitro and in vivo. In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC. Results: Vandetanib IC 50 s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion in vitro. In vivo, combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment. Conclusion: In 2D and 3D studies in vitro and in a syngeneic model in vivo, the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.


Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 727-736 ◽  
Author(s):  
Cun Wang ◽  
Hui Wang ◽  
Cor Lieftink ◽  
Aimee du Chatinier ◽  
Dongmei Gao ◽  
...  

ObjectivesHepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC.DesignA non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib.ResultsWe identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment.ConclusionOur data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2020 ◽  
Vol 45 (4) ◽  
pp. 451-453
Author(s):  
Cemaliye B. Akyerli ◽  
Şirin K. Yüksel ◽  
M. Cengiz Yakıcıer

AbstractObjectiveDespite the recent advances in diagnosis and treatment of hepatocellular carcinoma (HCC), it is still a major health problem. Therefore, understanding the molecular mechanism is very important. Our aim is to investigate the molecular basis of aflatoxin B1 (AFB1) induced HCC other than the hotspot TP53 p.Arg249Ser (c.747G>T) (R249S) mutation.Methods525 genes previously reported to be involved in carcinogenesis with mutations in different cancer types were analyzed by next generation sequencing for 525 cancer-gene panel (Roche/NimbleGen) in one tumor sample (T29) and one cell line (MAHLAVU) carrying TP53 R249S mutation. Additionally, ARID2 and BCORL1 genes were analyzed by Sanger sequencing for MAHLAVU and Primary Liver Carcinoma/Poliomyelitis Research Foundation/5 (PLC/PRF/5) cell lines.ResultsNo other common gene mutations were found in the analyzed T29 and MAHLAVU samples and also no genetic variation possibly associated with AFB1 was detected in PLC/PRF/5 cell line and 68 COSMIC HCC samples. Likewise, no pathogenic mutation was detected in ARID2 and BCORL1 genes of MAHLAVU and PLC/PRF/5 cell lines.ConclusionNo fingerprint mutations were detected in the analyzed genes. To the best of our knowledge, other hotspot mutations appear to be absent if not at a very low frequency in HCC carrying TP53 R249S mutation.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Weiya Cao ◽  
Xueke Liu ◽  
Yinci Zhang ◽  
Amin Li ◽  
Yinghai Xie ◽  
...  

Acquired resistance of hepatocellular carcinoma (HCC) to sorafenib (SFB) is the main reason for the failure of SFB treatment of the cancer. Abnormal activation of the PI3K/AKT/mTOR pathway is important in the acquired resistance of SFB. Therefore, we investigated whether BEZ235 (BEZ) could reverse acquired sorafenib resistance by targeting the PI3K/mTOR pathway. A sorafenib-resistant HCC cell line Huh7R was established. MTT assay, clone formation assay, flow cytometry, and immunofluorescence were used to analyze the effects of BEZ235 alone or combined with sorafenib on cell proliferation, cell cycle, apoptosis, and autophagy of Huh7 and Huh7R cells. The antitumor effect was evaluated in animal models of Huh7R xenografts in vivo. Western blot was used to detect protein levels of the PI3K/AKT/mTOR pathway and related effector molecules. In vitro results showed that the Huh7R had a stronger proliferation ability and antiapoptosis effect than did Huh7, and sorafenib had no inhibitory effect on Huh7R. SFB + BEZ inhibited the activation of the PI3K/AKT/mTOR pathway caused by sorafenib. Moreover, SFB + BEZ inhibited the proliferation and cloning ability, blocked the cell cycle in the G0/G1 phase, and promoted apoptosis in the two cell lines. The autophagy level in Huh7R cells was higher than in Huh7 cells, and BEZ or SFB + BEZ further promoted autophagy in the two cell lines. In vivo, SFB + BEZ inhibited tumor growth by inducing apoptosis and autophagy. We concluded that BEZ235 enhanced the sensitivity of sorafenib through suppressing the PI3K/AKT/mTOR pathway and inducing autophagy. These observations may provide the experimental basis for sorafenib combined with BEZ235 in trial treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document