Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma

Carbon ◽  
2021 ◽  
Author(s):  
Hu Luo ◽  
Khan Muhammad Ajmal ◽  
Wang Liu ◽  
Kazuya Yamamura ◽  
Hui Deng
2020 ◽  
Vol 6 (2) ◽  
pp. 37
Author(s):  
Mariusz Radtke ◽  
Abdallah Slablab ◽  
Sandra Van Vlierberghe ◽  
Chao-Nan Lin ◽  
Ying-Jie Lu ◽  
...  

We investigate the possibilities to realize light extraction from single crystal diamond (SCD) nanopillars. This was achieved by dedicated 519 nm laser-induced spin-state initiation of negatively charged nitrogen vacancies (NV−). We focus on the naturally-generated by chemical vapor deposition (CVD) growth of NV−. Applied diamond was neither implanted with 14N+, nor was the CVD synthesized SCD annealed. To investigate the possibility of light extraction by the utilization of NV−’s bright photoluminescence at room temperature and ambient conditions with the waveguiding effect, we have performed a top-down nanofabrication of SCD by electron beam lithography (EBL) and dry inductively-coupled plasma/reactive ion etching (ICP-RIE) to generate light focusing nanopillars. In addition, we have fluorinated the diamond’s surface by dedicated 0 V SF6 ICP plasma. Light extraction and spin manipulations were performed with photoluminescence (PL) spectroscopy and optically detected magnetic resonance (ODMR) at room temperature. We have observed a remarkable effect based on the selective 0 V SF6 plasma etching and surprisingly, in contrast to literature findings, deactivation of NV− centers. We discuss the possible deactivation mechanism in detail.


2010 ◽  
Vol 447-448 ◽  
pp. 66-70 ◽  
Author(s):  
Mutsumi Touge ◽  
Satoru Anan ◽  
Shogo Wada ◽  
Akihisa Kubota ◽  
Yoshitaka Nakanishi ◽  
...  

The ultra-precision polishing assisted by the ultraviolet rays irradiation was performed to achieve the atomic-scale planarization of the single crystal diamond substrates. This polishing method is a novel and simple polishing method characterizing by a quartz disk and an ultraviolet irradiation device. The principle three crystal planes of the diamond substrate were polished by this method. The polished surfaces were evaluated by an optical interferometric profilers (Wyko), an atom force microscope (AFM) and LEED (low-energy electron diffraction). The surface roughness of the polished diamond substrates was evaluated as 0.2 ~ 0.4 nmRa in (100), (110) and (111) crystal planes. The LEED (low-energy electron diffraction) patterns indicated the almost perfect crystallographic structure without the residual processed strain beneath the polished surface. In this paper, the optimum polishing condition to achieve the atomic-scale planarization of the diamond substrates has been investigated by the evaluation of LEED patterns, Wyko and AFM images. The mechanismof the ultraviolet rays assisted polishing is discussed in detail.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 133 ◽  
Author(s):  
Sangeeta Punjabi ◽  
Dilip Barve ◽  
Narendra Joshi ◽  
Asoka Das ◽  
Dushyant Kothari ◽  
...  

In this article, electrical characteristics of a high-power inductively-coupled plasma (ICP) torch operating at 3 MHz are determined by direct measurement of radio-frequency (RF) current and voltage together with energy balance in the system. The variation of impedance with two parameters, namely the input power and the sheath gas flow rate for a 50 kW ICP is studied. The ICP torch system is operated at near atmospheric pressure with argon as plasma gas. It is observed that the plasma resistance increases with an increase in the RF-power. Further, the torch inductance decreases with an increase in the RF-power. In addition, plasma resistance and torch inductance decrease with an increase in the sheath gas flow rate. The oscillator efficiency of the ICP system ranges from 40% to 80% with the variation of the Direct current (DC) powers. ICP has also been numerically simulated using Computational Fluid Dynamics (CFD) to predict the impedance profile. A good agreement was found between the CFD predictions and the impedance experimental data published in the literature.


2002 ◽  
Vol 750 ◽  
Author(s):  
Chihiro Iwamoto ◽  
Hangsheng Yang ◽  
Toyonobu Yoshida

ABSTRACTDeformation behavior of the BN film was dynamically observed by high-resolution transmission electron microscopy. BN thin films were deposited on a narrow edge of Si flakes, using inductively coupled plasma-enhanced chemical vapor deposition. High-resolution observation of the sample revealed that the BN film was possibly deposited on the edge of the Si thinned to less than 10 nm in thickness, whose morphology varied depending on the thickness of the Si edge. Intriguing mechanical properties of the BN films, especially relating their dynamic behavior, were clearly verified by the high-resolution observation with piezo-ceramic tube for three-axis positioning of an indenter.


1989 ◽  
Vol 43 (8) ◽  
pp. 1385-1387 ◽  
Author(s):  
Thomas R. Smith ◽  
M. Bonner Denton

Studies were performed on the effect of torch pressure on the excitation conditions within an inductively coupled plasma (ICP). Experimentally measured magnesium ion-to-atom ratios and electron densities were used to determine the deviation of the plasma from local thermodynamic equilibrium (LTE) conditions. Results of these studies indicate that the plasma is in an infrathermal state when operated at atmospheric pressure, and excitation conditions within the central channel of an ICP shift towards LTE conditions as torch pressure is increased.


1990 ◽  
Vol 5 (11) ◽  
pp. 2326-2333 ◽  
Author(s):  
M. A. Cappelli ◽  
T. G. Owano ◽  
C. H. Kruger

A study of diamond synthesis in an atmospheric pressure inductively coupled argon-hydrogen-methane plasma is presented. The plasma generated has an active area of 20 cm2 and a free stream temperature of approximately 5000 K. Deposition experiments lasting 1 h in duration have been performed in both stagnation flow and flat plate parallel flow geometries. The diamond film deposited in both configurations are nonuniform yet fairly reproducible. The variation in the growth rates at various regions of the substrate is attributed to the variation in the surface atomic hydrogen flux. Growth rates are as high as 50 μm/h, in regions of the substrate where the atomic hydrogen flux is expected to be large. Little or no growth is observed in regions where the atomic hydrogen is expected to recombine within the thermal boundary layer before arriving at the surface. Individual particles are analyzed by micro-Raman spectroscopy. Large (50 μm) size well-faceted particles show little evidence of non-diamond carbon content and are found to be under a state of compression, displaying shifts in the principal phonon mode as great as 3 cm−1.


Sign in / Sign up

Export Citation Format

Share Document