Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices

2020 ◽  
Vol 392 ◽  
pp. 123788 ◽  
Author(s):  
Jie Xu ◽  
Zengbin Wang ◽  
Jun You ◽  
Xiankai Li ◽  
Mingjie Li ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3574
Author(s):  
Pejman Heidarian ◽  
Hossein Yousefi ◽  
Akif Kaynak ◽  
Mariana Paulino ◽  
Saleh Gharaie ◽  
...  

Electroconductive hydrogels with stimuli-free self-healing and self-recovery (SELF) properties and high mechanical strength for wearable strain sensors is an area of intensive research activity at the moment. Most electroconductive hydrogels, however, consist of static bonds for mechanical strength and dynamic bonds for SELF performance, presenting a challenge to improve both properties into one single hydrogel. An alternative strategy to successfully incorporate both properties into one system is via the use of stiff or rigid, yet dynamic nano-materials. In this work, a nano-hybrid modifier derived from nano-chitin coated with ferric ions and tannic acid (TA/Fe@ChNFs) is blended into a starch/polyvinyl alcohol/polyacrylic acid (St/PVA/PAA) hydrogel. It is hypothesized that the TA/Fe@ChNFs nanohybrid imparts both mechanical strength and stimuli-free SELF properties to the hydrogel via dynamic catecholato-metal coordination bonds. Additionally, the catechol groups of TA provide mussel-inspired adhesion properties to the hydrogel. Due to its electroconductivity, toughness, stimuli-free SELF properties, and self-adhesiveness, a prototype soft wearable strain sensor is created using this hydrogel and subsequently tested.


Author(s):  
Xiaoliang Chen ◽  
Peng Sun ◽  
Hongmiao Tian ◽  
Xiangming Li ◽  
Chunhui Wang ◽  
...  

Flexible and stretchable conductors are critical elements for constructing soft electronic systems and have recently attracted tremendous attention. Next generation electronic devices call for self-healing conductors that can mimic the...


Author(s):  
Аnatoly V. Kuznetsov ◽  
Yuriy P. Yurenkov ◽  
Airat I. Agliullov

The advantages of current limiters based on liquid metal self-healing fuses (LMSHF) provoke interest and the need for the development and continuation of research in the direction of creating prototypes and industrial samples of LMSHF, determining the sphere of their application. One of the significant reasons for the lack of the necessary results of experimental research in the literature sources is the technological problems of manufacturing prototypes of LMSHF and preparing them for testing. This is especially noticeable when using fusible elements made of alkali metals that are aggressive to the environment. The proposed approach to solving the technological problems of manufacturing and preparing prototypes for testing is of interest and can be used by scientific groups engaged in research related to LMSHF. The development and discussion of such a technology can contribute to the activation of research towards of creating prototypes, their research aimed at obtaining new practical results.


Sign in / Sign up

Export Citation Format

Share Document