scholarly journals Alkali-activated laterite binders: Influence of silica modulus on setting time, Rheological behaviour and strength development

2021 ◽  
pp. 100175
Author(s):  
Cyriaque Rodrigue Kaze ◽  
Adeyemi Adesina ◽  
Gisèle Laure Lecomte-Nana ◽  
Thamer Alomayri ◽  
Elie Kamseu ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1927
Author(s):  
Lei Jin ◽  
Guodong Huang ◽  
Yongyu Li ◽  
Xingyu Zhang ◽  
Yongsheng Ji ◽  
...  

Setting time and mechanical properties are key metrics needed to assess the properties of municipal solid waste incineration (MSWI) bottom ash alkali-activated samples. This study investigated the solidification law, polymerization, and strength development mechanism in response to NaOH and liquid sodium silicate addition. Scanning electron microscopy and X-ray diffraction were used to identify the formation rules of polymerization products and the mechanism of the underlying polymerization reaction under different excitation conditions. The results identify a strongly alkaline environment as the key factor for the dissolution of active substances as well as for the formation of polymerization products. The self-condensation reaction of liquid sodium silicate in the supersaturated state (caused by the loss of free water) is the major reason for the rapid coagulation of alkali-activated samples. The combination of both NaOH and liquid sodium silicate achieves the optimal effect, because they play a compatible coupling role.


2018 ◽  
Vol 9 ◽  
pp. e00198 ◽  
Author(s):  
Prinya Chindaprasirt ◽  
Tanakorn Phoo-ngernkham ◽  
Sakonwan Hanjitsuwan ◽  
Suksun Horpibulsuk ◽  
Anurat Poowancum ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Oriana Rojas-Duque ◽  
Lina Marcela Espinosa ◽  
Rafael A. Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article reports the production and characterization of a hybrid concrete based on the alkaline activation of a fly ash (FA) of Colombian origin, which was added with 10% Portland cement (OPC) in order to promote the compressive strength development at room temperature. The alkali-activated hybrid cement FA/OPC 90/10 was classified as a low heat reaction cement (type LH), according to American Society of Testing Materials, ASTM C1157; the compressive strength was of 31.56 MPa and of 22.68 MPa (28 days) at the levels of paste and standard mortar, respectively, with an initial setting time of 93.3 min. From this binder, a hybrid concrete was produced and classified as a structural type, with a compressive strength of 23.16 MPa and a flexural modulus of rupture of 5.32 MPa, at 28 days of curing. The global warming potential index (GWP 100), based on life cycle analysis, was 35% lower than the reference concrete based on 100% OPC. Finally, its use was validated in the manufacture of a solid block-type construction element, which reached a compressive strength of 21.9 MPa at 28 days, exceeding by 40.6% the minimum strength value established by the Colombia Technical Standard, NTC 4026 (13 MPa) to be classified as high class structural blocks.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2874 ◽  
Author(s):  
In Kyu Jeon ◽  
Jae Suk Ryou ◽  
Sadam Hussain Jakhrani ◽  
Hong Gi Kim

This study investigates the potential of light-burnt dolomite (LBD) as a supplementary cementitious material with ground granulated blast furnace slag (GGBFS) and Ordinary Portland cement (OPC). In this work, LBD was substituted for up to 20% of GGBFS in sodium sulfate-activated slag systems. The effects of LBD incorporation on the flow, setting time, compressive and flexural strength development, and drying shrinkage were explored with, X-ray diffraction and thermogravimetric analyses. LBD incorporation resulted in greater strength development of an alkali-activated slag system. The optimum LBD content for strength development was 10%, regardless of ordinary Portland cement content. In addition, LBD decreased the drying shrinkage, accelerated the hydration process, and induced hydrotalcite formation, which can be attributed to the reactive MgO inside LBD.


2011 ◽  
Vol 477 ◽  
pp. 164-169 ◽  
Author(s):  
Chang Hui Yang ◽  
Fang Wu ◽  
Ke Chen

The set of alkali-activated slag cement (AASC) and concrete and the measures for set-retarding were reviewed. Due to the fast set of high and super high strength alkali-activated slag cement and concrete, an inorganic compound set retarder YP-3 was developed. The effect of the retarder on setting time and strength as well as heat evolution of AASC were tested, and the mechanism of the retarder was analysed. Results show that the retarder can regulate the initial set of high strength AASC in the range of 29hrs with little negative effect on its strength development. The retarder could react with silicate ions from liquid to rapidly form a compact film in early age of hydration of AASC, the film covered the surface of slag and obstructed R+ and OH- in contact with slag particle directly. Consequently the set of AAC was delayed.


2012 ◽  
Vol 482-484 ◽  
pp. 1012-1016
Author(s):  
Mao Chieh Chi ◽  
Jiang Jhy Chang ◽  
Ran Huang ◽  
Zai Long Weng

The purpose of this study is to investigate the effect of various contents and modulus ratios of alkali activators on strength development and drying shrinkage of alkali-activated slag pastes. Experimental results show that the alkali-modulus ratio is the key factor influencing pH value and drying shrinkage. The lower the alkali-modulus ratio is, the higher the pH value is, and the lower the drying shrinkage is. In addition, the increase of the amount of alkali-activators decreases the initial and final setting time. The compressive strength of alkali-activated slag pastes is higher than that of Portland cement paste at all ages.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 844 ◽  
Author(s):  
Xuesen Lv ◽  
Yao Qin ◽  
Zhaoxu Lin ◽  
Zhenkun Tian ◽  
Xuemin Cui

Coating technology can be applied to decorate building constructions. Alkali-activated materials (AAM) are promising green and durable inorganic binders which show potential for development as innovative coating. In the paper, the possibility of using AAM composited with starch (CMS) as a novel plastic formable inorganic coating for decorating in building was investigated. The rheological properties, including plastic viscosity, yield stress, and thixotropy were considered to be critical properties to obtain the working requirements. Four different mixtures were systematically investigated to obtain the optimum formulation, and then were used to study their hardened properties, such as mechanical strengths (compressive, flexural, and adhesive strength), drying shrinkage, cracking behavior, and microstructure. Study results found that CMS could quickly and efficiently be hydrolyzed in an alkaline solution to produce organic plastic gel which filled in AAM paste, leading to the significant improvement of coating consistency, plastic viscosity, and thixotropy. The optimum coating composited with 15.40 wt% CMS shows a relatively stable rheological development, the setting time sufficient at higher than 4 h. Furthermore, CMS shows a significant positive effect on the cracking and shrinkage control due to padding effect and water retention of CMS, which results in no visible cracks on the coating surface. Although the mechanical strength development is relatively lower than that of plain AAM, its value, adhesive strength 2.11 MPa, compressive strength 55.09 MPa, and flexural strength 8.06 MPa highly meet the requirements of a relevant standard.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Salar Lashkari ◽  
Farzad Yazdipanah ◽  
Mahyar Shahri ◽  
Prabir Sarker

AbstractCoatings are used as practical solutions against the intrusion of corrosive ions into concrete structures, particularly, in the harsh marine environment. In the present study, the effectiveness of using cement-based and geopolymer-based coatings produced using by-product materials has been evaluated. Silica fume and GGBFS at their optimum dosages were incorporated into mortar mixtures as a cement replacement, and mixtures of NaOH or KOH and sodium silicate solutions were used in the alkali-activated mortars. Shrinkage test, RCMT, and capillary absorption test as common experiments for durability analysis, as well as tests related to the mechanical and bonding properties including compressive strength test, pull-off test, and shear bonding strength test were carried out on the specimens. According to the results, both geopolymer and cement-based mortars improved the compressive and bonding strengths, and chloride diffusion resistance of coatings compared to the OPC mortar. Silica fume was found to be more effective in the strength development of mortars at young ages, while GGBFS was more responsible for acting as a filler and producing further gel in the older ages. The major drawback with geopolymer mortars is the high rate of water absorption and shrinkage coefficient in the early hours, which shows the importance of curing of these mortars at young ages. Overall, the mix design produced with 30% GGBFS and 7.5% silica fume showed the highest durability and mechanical properties and proved to be more compatible with the harsh environment of the Persian Gulf.


1989 ◽  
Vol 178 ◽  
Author(s):  
Kirsten G. Jeppesen

AbstractSpray dried absorption products (SDA) having special characteristics are used as substitutes for cement in the preparation of mortars; the qualities of the resulting mixed mortars are described. Conditions are described for mortar mixes, data for which were presented at the MRS Fall Meeting 1987.The influence of the composition of the SDA on water requirement and setting time has been studied. A full scale project involving 3 precast, reinforced concrete front-elements containing 20 and 30 wt.% SDA is described. Strength development, mineralogical composition and corrosion were monitored for two years.A non-standard freeze-thaw experiment was performed which compares mortars containing SDA and fly ash (FA) and also shows the effect of superplasticizer.The possibility of improving the SDA by grinding has been tested and a limited improvement has been found. The strength of the mixed mortars seems slightly influenced by the grain size of SDAGypsum (CaSO4·2H2O), synthetic calcium-sulphite (CaSO3·½H2O) and 2 SDAs have been used as retarders for cement clinker. Mortar test prisms have been cast and comparative strengths after curing for 3 years are reported


Sign in / Sign up

Export Citation Format

Share Document