scholarly journals Association between habitual coffee consumption and multiple disease outcomes: A Mendelian randomisation phenome-wide association study in the UK Biobank

2020 ◽  
Vol 39 (11) ◽  
pp. 3467-3476 ◽  
Author(s):  
Konstance Nicolopoulos ◽  
Anwar Mulugeta ◽  
Ang Zhou ◽  
Elina Hyppönen
Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2218
Author(s):  
Shuai Yuan ◽  
Paul Carter ◽  
Amy M. Mason ◽  
Stephen Burgess ◽  
Susanna C. Larsson

Coffee consumption has been linked to a lower risk of cardiovascular disease in observational studies, but whether the associations are causal is not known. We conducted a Mendelian randomization investigation to assess the potential causal role of coffee consumption in cardiovascular disease. Twelve independent genetic variants were used to proxy coffee consumption. Summary-level data for the relations between the 12 genetic variants and cardiovascular diseases were taken from the UK Biobank with up to 35,979 cases and the FinnGen consortium with up to 17,325 cases. Genetic predisposition to higher coffee consumption was not associated with any of the 15 studied cardiovascular outcomes in univariable MR analysis. The odds ratio per 50% increase in genetically predicted coffee consumption ranged from 0.97 (95% confidence interval (CI), 0.63, 1.50) for intracerebral hemorrhage to 1.26 (95% CI, 1.00, 1.58) for deep vein thrombosis in the UK Biobank and from 0.86 (95% CI, 0.50, 1.49) for subarachnoid hemorrhage to 1.34 (95% CI, 0.81, 2.22) for intracerebral hemorrhage in FinnGen. The null findings remained in multivariable Mendelian randomization analyses adjusted for genetically predicted body mass index and smoking initiation, except for a suggestive positive association for intracerebral hemorrhage (odds ratio 1.91; 95% CI, 1.03, 3.54) in FinnGen. This Mendelian randomization study showed limited evidence that coffee consumption affects the risk of developing cardiovascular disease, suggesting that previous observational studies may have been confounded.


Author(s):  
Mengyao Yu ◽  
Sergiy Kyryachenko ◽  
Stephanie Debette ◽  
Philippe Amouyel ◽  
Jean-Jacques Schott ◽  
...  

Background: Mitral valve prolapse (MVP) is a common cardiac valve disease, which affects 1 in 40 in the general population. Previous genome-wide association study have identified 6 risk loci for MVP. But these loci explained only partially the genetic risk for MVP. We aim to identify additional risk loci for MVP by adding data set from the UK Biobank. Methods: We reanalyzed 1007/479 cases from the MVP-France study, 1469/862 controls from the MVP-Nantes study for reimputation genotypes using HRC and TOPMed panels. We also incorporated 434 MVP cases and 4527 controls from the UK Biobank for discovery analyses. Genetic association was conducted using SNPTEST and meta-analyses using METAL. We used FUMA for post-genome-wide association study annotations and MAGMA for gene-based and gene-set analyses. Results: We found TOPMed imputation to perform better in terms of accuracy in the lower ranges of minor allele frequency below 0.1. Our updated meta-analysis included UK Biobank study for ≈8 million common single-nucleotide polymorphisms (minor allele frequency >0.01) and replicated the association on Chr2 as the top association signal near TNS1 . We identified an additional risk locus on Chr1 ( SYT2 ) and 2 suggestive risk loci on chr8 ( MSRA ) and chr19 ( FBXO46 ), all driven by common variants. Gene-based association using MAGMA revealed 6 risk genes for MVP with pronounced expression levels in cardiovascular tissues, especially the heart and globally part of enriched GO terms related to cardiac development. Conclusions: We report an updated meta-analysis genome-wide association study for MVP using dense imputation coverage and an improved case-control sample. We describe several loci and genes with MVP spanning biological mechanisms highly relevant to MVP, especially during valve and heart development.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Carolina Ochoa-Rosales ◽  
Niels van der Schaft ◽  
Kim V Braun ◽  
Frederick Ho ◽  
Fanny Petermann ◽  
...  

Background: Coffee intake has been linked to lower type 2 diabetes (T2D) risk. We hypothesized this may be mediated by coffee’s effects on inflammation. Methods: Using participants from the UK Biobank (UKB n=145370) and Rotterdam Study (RS n=7172) cohorts, we studied associations of coffee intake with incident T2D; longitudinally measured insulin resistance (HOMA IR); serum levels of inflammation markers; and the mediating role of inflammation. Statistical regression models were adjusted for sociodemographic, lifestyle and health factors. Results: The median follow up was 7 (UKB) and 9 (RS) years. An increase of one coffee cup/day was associated with 4-6% lower T2D risk (RS HR=0.94 [95% CI 0.90; 0.98]; UKB HR=0.96 [0.94; 0.98]); lower HOMA IR (RS β=-0.017 [-0.024; -0.010]); with lower C reactive protein (CRP) and higher adiponectin (Figure1). Consumers of filtered coffee had the lowest T2D risk (UKB HR=0.88 [0.83; 0.93]). CRP levels mediated 9.6% (UKB) and 3.4% (RS) of the total effect of coffee on T2D (Figure 1). Conclusions: We suggest that coffee’s beneficial effects on lower T2D risk are partially mediated by improvements in systemic inflammation.Figure 1. a CRP and a adiponectin refer to the effect of coffee intake on CRP and adiponectin levels. a CRP RS : β=-0.014 (-0.022; -0.005); UKBB a CRP UKB : β=-0.011 (-0.012; -0.009) and RS a adiponectin : β=0.025 (0.007; 0.042). b CRP and b adiponectin refer to the effect of coffee related levels in CRP and adiponectin on incident T2D, independent of coffee. RS b CRP : HR=1.17 (1.04; 1.31); UKB b CRP : HR=1.45 (1.37; 1.54); and b adiponectin : HR=0.58 (0.32; 0.83). c′ refers to coffee’ effect on T2D going directly or via others mediators. UKB c′ independent of CRP : HR=0.96 (0.94; 0.99); RS c′ independent of CRP : HR=0.94 (0.90; 0.99); and RS c′ independent of CRP+adiponectin : HR=0.90 (0.80; 1.01). Coffee related changes in CRP may partially explain the beneficial link between coffee and T2D, mediating a 3.4% (0.6; 4.8, RS) and 9.6% (5.7; 24.4, UKB). Evidence of mediation was also found for adiponectin.


BMJ ◽  
2019 ◽  
pp. l4410 ◽  
Author(s):  
Agustin Cerani ◽  
Sirui Zhou ◽  
Vincenzo Forgetta ◽  
John A Morris ◽  
Katerina Trajanoska ◽  
...  

Abstract Objective To determine if genetically increased serum calcium levels are associated with improved bone mineral density and a reduction in osteoporotic fractures. Design Mendelian randomisation study. Setting Cohorts used included: the UK Biobank cohort, providing genotypic and estimated bone mineral density data; 25 cohorts from UK, USA, Europe, and China, providing genotypic and fracture data; and 17 cohorts from Europe, providing genotypic and serum calcium data (summary level statistics). Participants A genome-wide association meta-analysis of serum calcium levels in up to 61 079 individuals was used to identify genetic determinants of serum calcium levels. The UK Biobank study was used to assess the association of genetic predisposition to increased serum calcium with estimated bone mineral density derived from heel ultrasound in 426 824 individuals who had, on average, calcium levels in the normal range. A fracture genome-wide association meta-analysis comprising 24 cohorts and the UK Biobank including a total of 76 549 cases and 470 164 controls, who, on average, also had calcium levels in the normal range was then performed. Results A standard deviation increase in genetically derived serum calcium (0.13 mmol/L or 0.51 mg/dL) was not associated with increased estimated bone mineral density (0.003 g/cm 2 , 95% confidence interval −0.059 to 0.066; P=0.92) or a reduced risk of fractures (odds ratio 1.01, 95% confidence interval 0.89 to 1.15; P=0.85) in inverse-variance weighted mendelian randomisation analyses. Sensitivity analyses did not provide evidence of pleiotropic effects. Conclusions Genetic predisposition to increased serum calcium levels in individuals with normal calcium levels is not associated with an increase in estimated bone mineral density and does not provide clinically relevant protection against fracture. Whether such predisposition mimics the effect of short term calcium supplementation is not known. Given that the same genetically derived increase in serum calcium is associated with an increased risk of coronary artery disease, widespread calcium supplementation in the general population could provide more risk than benefit.


2021 ◽  
Author(s):  
Jonathan Sulc ◽  
Jenny Sjaarda ◽  
Zoltan Kutalik

Causal inference is a critical step in improving our understanding of biological processes and Mendelian randomisation (MR) has emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from biobanks. Although many extensions have been developed to address the three core assumptions of MR-based causal inference (relevance, exclusion restriction, and exchangeability), most approaches implicitly assume that any putative causal effect is linear. Here we propose PolyMR, an MR-based method which provides a polynomial approximation of an (arbitrary) causal function between an exposure and an outcome. We show that this method provides accurate inference of the shape and magnitude of causal functions with greater accuracy than existing methods. We applied this method to data from the UK Biobank, testing for effects between anthropometric traits and continuous health-related phenotypes and found most of these (84%) to have causal effects which deviate significantly from linear. These deviations ranged from slight attenuation at the extremes of the exposure distribution, to large changes in the magnitude of the effect across the range of the exposure (e.g. a 1 kg/m2 change in BMI having stronger effects on glucose levels if the initial BMI was higher), to non-monotonic causal relationships (e.g. the effects of BMI on cholesterol forming an inverted U shape). Finally, we show that the linearity assumption of the causal effect may lead to the misinterpretation of health risks at the individual level or heterogeneous effect estimates when using cohorts with differing average exposure levels.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Ang Zhou ◽  
Elina Hyppönen

Abstract Background Long-term heavy coffee consumption may adversely affect individuals’ cardiovascular disease (CVD) risk. As hyperlipidemia is a well-established contributor to CVD, we investigated the association between habitual coffee intake and plasma lipid profile. Methods We used data from up to 362,571 UK Biobank participants to examine associations between coffee intake and plasma lipid profiles, including LDL-C, HDL-C, total-C, triglycerides, ApoA1 and ApoB. Inverse variance weighted mendelian randomization (MR) was used to interrogate the causal nature of coffee-lipid associations, complemented by pleiotropy-robust methods, including MR-median, MR-Mode, MR-PRESSO and MR-Egger. Results We observed positive dose-dependent associations between self-reported coffee intake and plasma concentration of LDL-C, ApoB and total-C, with the highest lipid levels seen among participants drinking >6 cups/day (Plinear trend≤1.97E-57 for all). Genetic instrument for coffee intake was robustly associated with self-reported intake in the UK Biobank (F-statistic = 416). One cup increase in genetically instrumented intake was associated with 0.07 mmol/L (95%CI 0.03 to 0.12), 0.02 g/L (95%CI 0.01 to 0.03), and 0.09 mmol/L (95%CI 0.04 to 0.14) increase in LDL-C, ApoB, and total-C, respectively. Pleiotropy-robust methods provided largely consistent results albeit with greater imprecision when using MR-Egger. Conclusions Our phenotypic and genetic analysis consistently suggests that long-term heavy coffee consumption can lead to unfavourable lipid profile, which could potentially increase individuals’ risk for CVD. Individuals with elevated cholesterol may need to reduce their daily coffee intake. Key messages Our study provides evidence that long-term heavy coffee consumption can lead to unfavourable lipid profile.


Sign in / Sign up

Export Citation Format

Share Document