Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete

2017 ◽  
Vol 135 ◽  
pp. 129-136 ◽  
Author(s):  
Gyu Don Moon ◽  
Sungwoo Oh ◽  
Sang Hwa Jung ◽  
Young Cheol Choi
2001 ◽  
Vol 50 (5) ◽  
pp. 543-549 ◽  
Author(s):  
Hiroyoshi KATO ◽  
Akinori NAKAMURA ◽  
Hiroyuki DOI ◽  
Toyoaki MIYAGAWA

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3221 ◽  
Author(s):  
Isabel Galan ◽  
Lukas Briendl ◽  
Maria Thumann ◽  
Florian Steindl ◽  
Rudolf Röck ◽  
...  

The effects of fine limestone powder on the early hydration of cementitious systems accelerated by means of alkali-free aluminum sulfate based products, commonly used for shotcrete applications, were investigated in the course of laboratory and real scale tests. In binary (CEM I + limestone) and ternary (CEM I + limestone + slag) systems the addition of fine limestone led to an enhancement of the hydration degree and strength development at early times (<24 h). The formation of ettringite, aluminate hydrates, and C–S–H is affected by the joint action of the setting accelerator and the fine limestone. Accelerator and limestone, in combination with the cement, can be optimized to enhance ettringite and silicate reaction, in some cases coupled with aluminate reaction inhibition, to produce mixes suitable for sprayed concrete applications. Such optimization can help to reduce the cement content in the mixes without compromising the early strength development of the shotcrete.


1987 ◽  
Vol 113 ◽  
Author(s):  
R. L. Day ◽  
M. A. Ward

ABSTRACTSulphate expansion and strength tests were performed on mortars containing equal proportions of Type 10 (ASTM Type I) Portland cement and fly ash as the cementitious material. Two intermediate-Ca subbituminous ashes, one high-Ca subbituminous ash and one bituminous ash were tested. Control mortars manufactured with Types 10 and Type 50 (Type V ASTM) cements and one mortar containing 50% replacement of cement with limestone powder were also examined. The period and temperature of curing prior to sulphate exposure and the concentration and pH of the attacking solutions were other test parameters. Results indicate that the two intermediate-Ca subbituminous ashes from Alberta Canada, combined with Type 10 cement produce mortars that show excellent long-term strength, acceptable short term strength, and are highly resistant to attack by aggressive sulphate solutions. In some cases durability of these mortars was better than the control mortar made with Type 50 cement. On the other hand, mortar made using the high-Ca ash showed very high susceptibility to sulphate attack; at the same time, mortars made with this ash showed good strength development. Qualitative x-ray diffraction analysis indicates the presence of more lime, magnesium and iron bearing crystalline compounds in the high-Ca ash than in the Alberta ashes. These appear to be responsible for the poor performance in sulphate environments.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5204
Author(s):  
Adeshina Adewale Adewumi ◽  
Mohd Azreen Mohd Ariffin ◽  
Mohammed Maslehuddin ◽  
Moruf Olalekan Yusuf ◽  
Mohammad Ismail ◽  
...  

This present study evaluates the effect of silica modulus (Ms) and curing temperature on strengths and the microstructures of binary blended alkali-activated volcanic ash and limestone powder mortar. Mortar samples were prepared using mass ratio of combined Na2SiO3(aq)/10 M NaOH(aq) of 0.5 to 1.5 at an interval of 0.25, corresponding to Ms of 0.52, 0.72, 0.89, 1.05 and 1.18, respectively, and sole 10 M NaOH(aq). Samples were then subjected to ambient room temperature, and the oven-cured temperature was maintained from 45 to 90 °C at an interval of 15 °C for 24 h. The maximum achievable 28-day strength was 27 MPa at Ms value of 0.89 cured at 75 °C. Samples synthesised with the sole 10 M NaOH(aq) activator resulted in a binder with a low 28-day compressive strength (15 MPa) compared to combined usage of Na2SiO3(aq)/10 M NaOH(aq) activators. Results further revealed that curing at low temperatures (25 °C to 45 °C) does not favour strength development, whereas higher curing temperature positively enhanced strength development. More than 70% of the 28-day compressive strength could be achieved within 12 h of curing with the usage of combined Na2SiO3(aq)/10 M NaOH(aq). XRD, FTIR and SEM + EDX characterisations revealed that activation with combined Na2SiO3(aq)/10 M NaOH(aq) leads to the formation of anorthite (CaAl2Si2O8), gehlenite (CaO.Al2O3.SiO2) and albite (NaAlSi3O8) that improve the amorphosity, homogeneity and microstructural density of the binder compared to that of samples synthesised with sole 10 M NaOH(aq).


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shuhua Liu ◽  
Hongling Wang ◽  
Jianpeng Wei

The role of various powders including glass powder (GP), limestone powder (LP), and steel slag powder (SSP) during the hydration process of cement-based materials was investigated by using X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), and strength tests. GP has adverse impact on early strength, but the pozzolanic reaction at later stage enhances the strength development greatly. LP can significantly improve early strength. SSP has a good contribution to the early and later strength of the paste when its content is less than 15%. GP has little effect on the kind of hydration products but relatively large effects on the quantity. Calcium hydroxide (CH) content of GP paste decreases over curing age gradually, which is different from pure cement paste because its pozzolanic activity consumes more CH than that generated from the cement hydration. SSP and LP mainly play a role of filling effect at early stage. Nucleating effect of LP also promotes the early hydration of cement. The hydration of LP occurs at later stage and forms the calcium carboaluminate hydrates. The hydration of SSP is relatively slow, which generates CH at later stage and is effective in the strength development.


2018 ◽  
Vol 761 ◽  
pp. 193-196 ◽  
Author(s):  
Myroslav Sanytsky ◽  
Tetiana Kropyvnytska ◽  
Taras Kruts ◽  
Oleksander Horpynko ◽  
Iryna Geviuk

The strength development of a quaternary Portland cement composite system containing blast-furnace slag, zeolitic tuff and limestone powder is presented. The composition and particle size distribution of the constituents are optimized by the incremental coefficient of the surface activity of the zeolite-containing Portland composite cements. Zeolitic tuff and limestone powder of high specific surface area lead to the increase of the surface activity of the entire system and a corresponding improvement in the performance of the cement.


2013 ◽  
Vol 675 ◽  
pp. 296-301
Author(s):  
Shao Min Song ◽  
Wen Zhong Bao ◽  
Wen Xin Zhao ◽  
Dong Min Jin

This paper studies the effects of high-volume composite mineral admixture made of limestone powder and low-quality fly ash on the properties of concrete,and studies the form of attack of cement-based material made of limestone powder at low water-binder ratio under low-temperature sulfate environment.Through experiments, this paper makes clear the workability of fresh concrete and analyzes the law of strength development of concrete. The experimental results indicate that the concrete with high-volume limestone powder as composite mineral admixture has good fresh properties; due to low water consumption per unit volume, medium-and-high-strength concrete can be prepared. As new type concrete mineral admixture, the composite mineral admixture made of limestone powder and low-quality fly ash will play an active role in the sustainable development of concrete industry. After the specimen with the water-binder ratio of less than 0.4 and the limestone powder volume of greater than 20% is soaked in 10% magnesium sulfate solution at low temperature at the age of 200d, gypsum attack-led destruction is caused to the concrete test cube, without thaumasite sulfate attack.


Sign in / Sign up

Export Citation Format

Share Document