A new approach to the role of IL-7 and TGF-ß in the in vitro generation of thymus-derived CD4+CD25+Foxp3+ regulatory T cells

Cytokine ◽  
2018 ◽  
Vol 102 ◽  
pp. 107-116 ◽  
Author(s):  
Anna Bieńkowska ◽  
Ewelina Kiernozek ◽  
Ewa Kozlowska ◽  
Łukasz Bugajski ◽  
Nadzieja Drela
2004 ◽  
Vol 200 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Michael R. Ehrenstein ◽  
Jamie G. Evans ◽  
Animesh Singh ◽  
Samantha Moore ◽  
Gary Warnes ◽  
...  

Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Guang-ju Zhao ◽  
Jia-yi Zheng ◽  
Jia-lan Bian ◽  
Long-wang Chen ◽  
Ning Dong ◽  
...  

Background.Growth arrest-specific (Gas) 6 is one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk), and its role as an immune modulator has been recently emphasized. Naturally occurring CD4+CD25+regulatory T cells (Tregs) are essential for the active suppression of autoimmunity. The present study was designed to investigate whether Tregs express TAM receptors and the potential role of Gas6-TAM signal in regulating the suppressive function of Tregs.Methods.The protein and mRNA levels of TAM receptors were determined by using Western blot, immunofluorescence, flow cytometry, and RT-PCR. Then, TAM receptors were silenced using targeted siRNA or blocked with specific antibody. The suppressive function of Tregs was assessed by using a CFSE-based T cell proliferation assay. Flow cytometry was used to determine the expression of Foxp3 and CTLA4 whereas cytokines secretion levels were measured by ELISA assay.Results.Tregs express both Axl and Mertk receptors. Gas6 increases the suppressive function of Tregs in vitro and in mice. Both Foxp3 and CTLA-4 expression on Tregs are enhanced after Gas6 stimulation. Gas6 enhances the suppressive activity of Tregs mainly through Axl receptor.Conclusion. Gas6 has a direct effect on the functions of CD4+CD25+Tregs mainly through its interaction with Axl receptor.


Author(s):  
Yi Zhong ◽  
Ting-Ting Lu ◽  
Xiao-Mei Liu ◽  
Bing-Li Liu ◽  
Yun Hu ◽  
...  

Abstract Context Regulatory T cells (Tregs) dysfunction plays an important role in the development and progression of Graves’ disease (GD). Programmed cell death 1 (PD-1) prompts FoxP3 in Tregs expression and enhances the suppressive activity of Tregs. Whether abnormal expression of PD-1 contributes to the breakdown of Tregs and the role of thyroid hormone in the PD-1 expression of Tregs in GD remain substantially undefined. Objective To evaluate the role of PD-1 in Tregs function and triiodothyronine (T3) in PD-1 expression in patients with GD and mice treated with T3. Methods We recruited 30 patients with GD and 30 healthy donors. PD-1 expression in Tregs and Tregs function were determined. To evaluate the effects of thyroid hormone on PD-1 expression in Tregs, we used T3 for the treatment of human peripheral blood mononuclear cells (PBMCs). We then treated mice with T3 to confirm the effect of thyroid hormone on PD-1 expression in Tregs and Tregs function in vivo. Results PD-1 expression in Tregs and the suppressive function of Tregs significantly decreased in patients with GD. T3 reduced PD-1 expression in human Tregs in a concentration- and time-dependent manner in vitro. High levels of circulating T3 reduced PD-1 expression in Tregs, impaired Tregs function, and disrupted T-helper cell (Th1 and Th2) balance in mice treated with T3. Conclusions Tregs dysfunction in GD patients might be due to down-regulation of PD-1 expression in Tregs induced by high levels of serum T3.


2002 ◽  
Vol 196 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Ciriaco A. Piccirillo ◽  
John J. Letterio ◽  
Angela M. Thornton ◽  
Rebecca S. McHugh ◽  
Mizuko Mamura ◽  
...  

CD4+CD25+ regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4+CD25−T cells and are potent suppressors of T cell activation in vitro. Their mechanism of suppression remains unknown, but most in vitro studies suggest that it is cell contact–dependent and cytokine independent. The role of TGF-β1 in CD4+CD25+ suppressor function remains unclear. While most studies have failed to reverse suppression with anti–transforming growth factor (TGF)-β1 in vitro, one recent study has reported that CD4+CD25+ T cells express cell surface TGF-β1 and that suppression can be completely abrogated by high concentrations of anti–TGF-β suggesting that cell-associated TGF-β1 was the primary effector of CD4+CD25+-mediated suppression. Here, we have reevaluated the role of TGF-β1 in CD4+CD25+-mediated suppression. Neutralization of TGF-β1 with either monoclonal antibody (mAb) or soluble TGF-βRII-Fc did not reverse in vitro suppression mediated by resting or activated CD4+CD25+ T cells. Responder T cells from Smad3−/− or dominant-negative TGF-β type RII transgenic (DNRIITg) mice, that are both unresponsive to TGF-β1–induced growth arrest, were as susceptible to CD4+CD25+-mediated suppression as T cells from wild-type mice. Furthermore, CD4+CD25+ T cells from neonatal TGF-β1−/− mice were as suppressive as CD4+CD25+ from TGF-β1+/+ mice. Collectively, these results demonstrate that CD4+CD25+ suppressor function can occur independently of TGF-β1.


2019 ◽  
Author(s):  
Justin Komguep Nono ◽  
Manfred B. Lutz ◽  
Klaus Brehm

ABSTRACTBackgroundAlveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis remain elusive so far.Methodology/Principal findingsWe herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-β-dependent manner. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-β (TGF-β)/activin subfamily members. EmACT obtained from heterologous expression promoted host TGF-β-driven CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT in the in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment.Conclusions/SignificanceIn conclusion, we herein show that E. multilocularis larvae secrete a factor with clear structural and functional homologies to mammalian activin A. Like its mammalian homolog, this protein induces the secretion of IL-10 by T-cells and contributes to the expansion of TGF-β-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation.AUTHOR SUMMARYThe metacestode larval stage of the tapeworm E. multilocularis grows infiltratively, like a malignant tumor, within the organs of its human host, thus causing the lethal disease alveolar echinococcosis (AE). Immunosuppression plays an important role in both survival and proliferation of the metacestode, which mainly depends on factors that are released by the parasite. These parasite-derived molecules are potential targets for developing new anti-echinococcosis drugs and/or improving the effectiveness of current therapies. Additionally, an optimized use of such factors could help minimize pathologies resulting from over-reactive immune responses, like allergies and autoimmune diseases. The authors herein demonstrate that the E. multilocularis metacestode releases a protein, EmACT, with significant homology to activin A, a cytokine that might support host TGF-β in its ability to induce the generation of immunosuppressive regulatory T-cells (Treg) in mammals. Like its mammalian counterpart, EmACT was associated with the expansion of TGF-β-induced Treg and stimulated the release of elevated amounts of immunosuppressive IL-10 by CD4+ T-cells. The authors also demonstrate that Treg are locally expanded by the metacestode during an infection of mice. These data confirm an important role of Treg for parasite establishment and growth during AE and suggest a potential role of EmACT in the expansion of these immunosuppressive cells around the parasite.


2009 ◽  
Vol 116 (8) ◽  
pp. 639-649 ◽  
Author(s):  
Richard J. Mellanby ◽  
David C. Thomas ◽  
Jonathan Lamb

There has been considerable historical interest in the concept of a specialist T-cell subset which suppresses over-zealous or inappropriate T-cell responses. However, it was not until the discovery that CD4+CD25+ T-cells had suppressive capabilities both in vitro and in vivo that this concept regained credibility and developed into one of the most active research areas in immunology today. The notion that in healthy individuals there is a subset of Treg-cells (regulatory T-cells) involved in ‘policing’ the immune system has led to the intensive exploration of the role of this subset in disease resulting in a number of studies concluding that a quantitative or qualitative decline in Treg-cells is an important part of the breakdown in self-tolerance leading to the development of autoimmune diseases. Although Treg-cells have subsequently been widely postulated to represent a potential immunotherapy option for patients with autoimmune disease, several studies of autoimmune disorders have demonstrated high numbers of Treg-cells in inflamed tissue. The present review highlights the need to consider a range of other factors which may be impairing Treg-cell function when considering the mechanisms involved in the breakdown of self-tolerance rather than focussing on intrinsic Treg-cell factors.


2020 ◽  
Vol 21 (7) ◽  
pp. 2356 ◽  
Author(s):  
Andreas von Knethen ◽  
Ulrike Heinicke ◽  
Andreas Weigert ◽  
Kai Zacharowski ◽  
Bernhard Brüne

Regulatory T cells (Tregs) are important mediators of immunological self-tolerance and homeostasis. Being cluster of differentiation 4+Forkhead box protein3+ (CD4+FOXP3+), these cells are a subset of CD4+ T lymphocytes and can originate from the thymus (tTregs) or from the periphery (pTregs). The malfunction of CD4+ Tregs is associated with autoimmune responses such as rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1D), inflammatory bowel diseases (IBD), psoriasis, systemic lupus erythematosus (SLE), and transplant rejection. Recent evidence supports an opposed role in sepsis. Therefore, maintaining functional Tregs is considered as a therapy regimen to prevent autoimmunity and allograft rejection, whereas blocking Treg differentiation might be favorable in sepsis patients. It has been shown that Tregs can be generated from conventional naïve T cells, called iTregs, due to their induced differentiation. Moreover, Tregs can be effectively expanded in vitro based on blood-derived tTregs. Taking into consideration that the suppressive role of Tregs has been mainly attributed to the expression and function of the transcription factor Foxp3, modulating its expression and binding to the promoter regions of target genes by altering the chromatin histone acetylation state may turn out beneficial. Hence, we discuss the role of histone deacetylation inhibitors as epigenetic modulators of Tregs in this review in detail.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Rebeca Arroyo Hornero ◽  
Christos Georgiadis ◽  
Peng Hua ◽  
Dominik Trzupek ◽  
Li-Zhen He ◽  
...  

AbstractRegulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27−CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.


2011 ◽  
Vol 294 (5) ◽  
pp. 781-788 ◽  
Author(s):  
Hui Liu ◽  
Li Xu ◽  
Jian-En Wei ◽  
Mei-Rong Xie ◽  
Shi-E Wang ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 61-61 ◽  
Author(s):  
Melissa D Docampo ◽  
Christoph K. Stein-Thoeringer ◽  
Amina Lazrak ◽  
Marina D Burgos da Silva ◽  
Justin Cross ◽  
...  

Abstract INTRODUCTION: The intestinal microbiota is essential for the fermentation of fibers into the short-chain fatty acids (SCFA) butyrate, acetate and propionate. SCFA can bind to G-protein-coupled receptors GPR41, GPR43 and GPR109a to activate downstream anti-inflammatory signaling pathways. In colitis or graft versus host disease (GVHD), GPR43 signaling has been reported as an important regulator of intestinal homeostasis by increasing the pool of regulatory T cells. In contrast to GPR43, which binds preferentially propionate and acetate, GPR109a is the major receptor for butyrate. We and others have demonstrated that butyrate can ameliorate gastrointestinal injury during GVHD through enterocyte protection. Therefore, we hypothesized that GPR109a plays an important role in the pathophysiology of intestinal GVHD, focusing specifically on alloreactive T cells. METHODS AND RESULTS: Using mouse models of GVHD, we examined the role of the butyrate/niacin receptor, GPR109a in allogeneic hematopoietic cell transplantation (allo-HCT). First, we studied whether a genetic knock-out (KO) of GPR109a in transplant recipient mice affected GVHD, but GPR109a-KO recipient mice did not exhibit increased mortality from GVHD compared to wild type (WT) mice. We next investigated the role of GPR109a in the donor compartment by transplanting either BM or T cells from WT or GPR109a-KO mice into major MHC mismatched BALB/c host mice. Mice transplanted with B6 BM, with T cells from a GPR109a-KO mouse into BALB/c hosts displayed a lower incidence of lethal GVHD (Fig. 1A). To determine whether the attenuation of GVHD is intrinsic to GPR109a-KO T cells, we established BM chimeras and performed a secondary transplant by transplanting B6 BM + (B6 à Ly5.1) or (GPR109a à Ly5.1) T cells into BALB/c hosts. We observed the same improvement in survival in mice that received GPR109a-KO T cells. This indicates an intrinsic role for GPR109a specifically in the donor hematopoietic compartment. Having identified a T-cell specific requirement for GPR109a we next examined expression of GPR109a on WT T cells in vitro at baseline and following stimulation with CD3/28 and found GPR109a significantly upregulated on both CD4+ and CD8+ T cells after 72 hours of stimulation (Fig 1B). At steady state in vivo, we observed the same numbers and percentages of splenic effector memory, central memory, and naïve CD4+ T cells as well as regulatory T cells in WT B6 mice and GPR109a-KO mice, suggesting normal T cell development in the knockout mice. In an in vitro mixed lymphocyte reaction (MLR), GPR109a-KO CD4+ T cells become activated, proliferate, polarize and secrete cytokine (specifically IFNg) to the same level as WT CD4+ T cells, suggesting normal functional capacity. However, after allo-HCT in mice we observed significantly fewer CD4+ and CD8+ T cells, and specifically fewer effector memory CD4+ T cells (Fig. C), in the small and large intestines of mice that received GPR109a-KO T cells at day 7 post transplant. In contrast, we found significantly more regulatory T cells in the intestines (Fig. 1D) and the spleen of GPR1091-KO T cell recipients, while numbers and percentages of polarized Th1 and Th17 T cells were similar between the two groups. We further 16S rRNA sequenced the gut microbiota of mice at day 7 after transplant and observed an increased relative abundance of bacteria from the genus Clostridium (Fig. 1D) along with an increased concentration of cecal butyrate as measured by GC-MS (Fig. 1E). In a preliminary graft versus tumor (GVT) experiment, we found that mice that received A20 tumor cells and GPR109a-KO T cells exhibited increased survival compared to mice that received A20 tumor cells and WT T cells. These preliminary findings suggest that GPR109a-KO T cells maintain their graft versus tumor response while causing less GVHD, and exclude a defective functional capacity. CONCLUSIONS: We report a novel role of the butyrate/niacin receptor GPR109a on donor T cells in allo-HCT as a genetic knock-out on T cells attenuates lethal GVHD. As these T cells are tested as functionally intact, we propose that the reduction in overall T cells of KO T cell recipients may underlie the attenuation in GVHD. Furthermore, such a reduction in allograft-induced gut injury is accompanied by maintenance of the gut commensal Clostridium and butyrate production, which is known to protect the intestinal epithelium and increases the regulatory T cell pool. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document