The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth — Study of surface morphology

2007 ◽  
Vol 16 (2) ◽  
pp. 409-411 ◽  
Author(s):  
Norio Tokuda ◽  
Takeyasu Saito ◽  
Hitoshi Umezawa ◽  
Hideyo Okushi ◽  
Satoshi Yamasaki
10.14311/1638 ◽  
2012 ◽  
Vol 52 (5) ◽  
Author(s):  
Petra Henychová ◽  
Klára Hiřmanová ◽  
Martin Vraný

Diamond is a promising material for implantable electrodes due to its unique properties. The aim of this work is to investigate the growth of boron-doped nanocrystalline diamond (B-NCD) films by plasma-enhanced microwave chemical vapor deposition at various temperatures, and to propose optimal diamond growth conditions for implantable electrodes. We have investigated the temperature dependence (450 °C–820 °C) of boron incorporation, surface morphology and growth rate on a polished quartz plate. Surface morphology and thickness were examined by atomic force microscopy (AFM).The quality of the films in terms of diamond and non-diamond phase of carbon was investigated by Raman spectroscopy. AFM imaging showed that the size of the grains was determined mainly by the thickness of the films, and varied from an average size of 40 nm in the lowest temperature sample to an average size of 150 nm in the sample prepared at the highest temperature. The surface roughness of the measured samples varied between 10 (495 °C) and 25 nm (800 °C). The growth rate of the sample increased with temperature. We found that the level of boron doping was strongly dependent on temperature during deposition. An optimal B-NCD sample was prepared at 595 °C.


1998 ◽  
Vol 08 (PR7) ◽  
pp. Pr7-391-Pr7-399 ◽  
Author(s):  
S. Farhat ◽  
C. Findeling ◽  
F. Silva ◽  
K. Hassouni ◽  
A. Gicquel

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Kosowska ◽  
Paweł Jakóbczyk ◽  
Michał Rycewicz ◽  
Alex Vitkin ◽  
Małgorzata Szczerska

AbstractWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifically, we combined a fiber-optic Fabry–Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-of-principle of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond film deposited on a silica substrate. The film plays the dual role of being the working electrode in the electrochemical reaction, as well as affording the reflectivity to enable the optical interferometry measurements. Optical responses during the redox reactions of the electrochemical process are presented. This work proves that simultaneous opto-electrochemical measurements of liquids are possible.


Author(s):  
Yunhao Zhang ◽  
Hongxin Qin ◽  
Yuting Huang ◽  
Feng Zhang ◽  
Hairong Liu ◽  
...  

Due to the essential role of Fe3+ in physiological and pathological processes, the detection of Fe3+ has drawn an increasing attention in the field of disease diagnosis and environmental protection....


Carbon ◽  
2018 ◽  
Vol 128 ◽  
pp. 164-171 ◽  
Author(s):  
A. Taylor ◽  
P. Ashcheulov ◽  
P. Hubík ◽  
L. Klimša ◽  
J. Kopeček ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2178 ◽  
Author(s):  
Shaili Falina ◽  
Sora Kawai ◽  
Nobutaka Oi ◽  
Hayate Yamano ◽  
Taisuke Kageura ◽  
...  

Author(s):  
Alicia Garcia-Costa ◽  
André Savall ◽  
Juan A. Zazo ◽  
Jose A. Casas ◽  
Karine Groenen Serrano

Perfluorooctanoic acid (PFOA), C7F15COOH, has been widely employed over the past fifty years, causing an environmental problem due to its dispersion and low biodegradability. Furthermore, the high stability of this molecule, conferred by the high strength of the C-F bond makes it very difficult to remove. In this work, electrochemical techniques are applied for PFOA degradation in view to study the influence of the cathode on defluorination. For this purpose, boron doped diamond (BDD), Pt, Zr and stainless steel have been tested as cathodes working with BDD anode at low electrolyte concentration (3.5 mM) to degrade PFOA at 100 mg/L. Among these cathodic materials, Pt improves the defluorination reaction. The electro-degradation of a PFOA molecule starts by a direct exchange of one electron at the anode and then follows a complex mechanism involving reaction with hydroxyl radicals and adsorbed hydrogen on the cathode. It is assumed that Pt acts as an electrocatalyst, enhancing PFOA defluorination by the reduction reaction of perfluorinated carbonyl intermediates on the cathode. The defluorinated intermediates are then more easily oxidized by HO• radicals. Hence, high mineralization (xTOC: 76.1%) and defluorination degrees (xF-: 58.6%) were reached with Pt working at current density j = 7.9 mA/cm2. This BDD-Pt system reaches a higher efficiency in terms of defluorination for a given electrical charge than previous works reported in literature. Influence of the electrolyte composition and initial pH are also explored.


2020 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Pavithra N ◽  
Shiva Subramani M ◽  
Balaganesh A S ◽  
RanjitKumar R ◽  
Dinesh K P B ◽  
...  

Herein, Ferric sulphide nanoparticles were prepared by co-precipitation (green synthesis) method.Structural study (XRD) confirms the crystalline nature of prepared Ferric sulphide nanoparticles. The crystallite size was estimated and it was found to ~2.0 nm. The surface morphology of the Fe2S3 nanoparticles shows the agglomeration and is sponge and dried algae like structure. EDS analysis reveals the presence of Fe, S, O and C elements in the prepared Ferric sulphide nanoparticles. FTIR spectrum of Ferric sulphide shows the characteristic peaks that confirms the presence of Fe and S in the sample. Moreover, the plant growth study proves that Ferric sulphide nanoparticles could be used as a fertilizer to enhance the agricultural production.


Sign in / Sign up

Export Citation Format

Share Document