scholarly journals Splitting test experimental dataset of hollow concrete blocks

Data in Brief ◽  
2021 ◽  
pp. 107646
Author(s):  
José Álvarez-Pérez ◽  
Milena Mesa-Lavista ◽  
Jorge H. Chávez-Gómez ◽  
Diego Cavazos-de-Lira ◽  
Bernardo T. Terán-Torres
2020 ◽  
pp. 49-52
Author(s):  
S.E. YANUTINA ◽  

The relevance of research in the factory laboratory of JSC «198 KZHI», which is part of the HC GVSU «Center», is dictated by the need to dispose of foam polystyrene waste that occurs in large quantities when producing the precast concrete. In the production of three-layer external wall panels, polystyrene heatinsulating plates of the PPS 17-R-A brand are used as an effective insulation material. The secondary use of PPS 17-R-A for its intended purpose, as a heater, is not possible. The volume of foam polystyrene produced varies from 25 to 45 m3 per month. Utilization (disposal) of foam polystyrene waste is an expensive undertaking. Its use as a filler in the production of expanded polystyrene blocks was tested in the factory’s laboratory to produce foam polystyrene concrete with specified physical and mechanical characteristics. The results of testing of expanded polystyrene concrete of classes B2.5 and B 7.5 are presented. It is shown that under the conditions of the reinforced concrete factory technology, the production of polystyrene concrete blocks is possible with the achievement of the design strength. The information presented in the article is aimed at motivating specialists who produce recast concrete to the possibility of using foam polystyrene waste for low-rise construction. Keywords: foam polystyrene, ecology, energy efficiency, foam polystyrene concrete, foam polystyrene heat insulation plates, precast concrete.


2020 ◽  
Vol 1 (1) ◽  
pp. 19-23
Author(s):  
Diah Willis L ◽  
Thomas Priyasmanu ◽  
Wahyu Panji A ◽  
D. H. Praswanto ◽  
E. Y. Setyawan

Development in the current development sector has grown rapidly, in this development we can see a good potential to be developed, namely the development of bricks with good quality compared to using red bricks which production takes a long time. Batako is an alternative that can be used in the construction of a building, because currently the price of red brick is quite high because the production cost is quite expensive. Besides, the price of firewood used for cooking red brick is getting difficult. Meanwhile, the demand for brick gradually increased because brick was one of the main components in building construction. So it needs to be developed in making brick blocks because the time is relatively short in the drying process. Therefore the community service team made a brick making machine with a vibration system for compaction and a faster production process in brick making using a machine that has been made, so that it can increase partner income, who previously produced 120 pieces with a manual system using a machine that could produce 500 pieces of brick per day.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2152
Author(s):  
Gonzalo García-Alén ◽  
Olalla García-Fonte ◽  
Luis Cea ◽  
Luís Pena ◽  
Jerónimo Puertas

2D models based on the shallow water equations are widely used in river hydraulics. However, these models can present deficiencies in those cases in which their intrinsic hypotheses are not fulfilled. One of these cases is in the presence of weirs. In this work we present an experimental dataset including 194 experiments in nine different weirs. The experimental data are compared to the numerical results obtained with a 2D shallow water model in order to quantify the discrepancies that exist due to the non-fulfillment of the hydrostatic pressure hypotheses. The experimental dataset presented can be used for the validation of other modelling approaches.


2021 ◽  
Vol 323 ◽  
pp. 112657
Author(s):  
Juan Rafael Filgueira Guerra ◽  
Antonio Luiz Pereira de Siqueira Campos ◽  
Humberto Dionísio de Andrade

2019 ◽  
Vol 11 (6) ◽  
pp. 751-767
Author(s):  
Raja Rajeshwari B. ◽  
Sivakumar M.V.N.

Purpose Fracture properties depend on the type of material, method of testing and type of specimen. The purpose of this paper is to evaluate fracture properties by adopting a stable test method, i.e., wedge split test. Design/methodology/approach Coarse aggregate of three different sizes (20 mm, 16 mm and 12.5 mm), three ratios of coarse aggregate, fine aggregate (CA:FA) (50:50, 45:55, 40:60), presence of steel fibers, and specimens without and with guide notch were chosen as parameters of the study. Findings Load-crack mouth opening displacement curves indicate that for both fibrous and non-fibrous mixes, higher volume of aggregate and higher size of coarse aggregate have high fracture energy. Originality/value For all volumes of coarse aggregate, it was noticed that specimens with 12.5 mm aggregate size achieved highest peak load and abrupt drop post-peak. The decrease in coarseness of internal structure of concrete (λ) resulted in the increase of fracture energy.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4174
Author(s):  
André M. Santos ◽  
Ângelo J. Costa e Silva ◽  
João M. F. Mota ◽  
João M. P. Q. Delgado ◽  
Fernando A. N. Silva ◽  
...  

The understanding of the mechanical fixation behavior of coatings is crucial for a better comprehension of the bonding systems, especially at the interface between the mortar and the substrate. Physical adherence is related, among other things, to the contents of the materials used in the roughcast and mortar coatings, due to the colloidal water penetration into the pores of the substrate. This work evaluated the influence of different lime solution additions replacing the kneading water in the preparation of roughcast and mortar coatings. Two types of substrates were investigated:ceramic bricks and concrete blocks. Three wall masonry panels were constructed, with dimensions of 220 × 180 cm2, one of concrete block and two of ceramic bricks, followed by the application of roughcast and mortar coating with an average thickness of 5 mm and 20 mm, respectively. Direct tensile bond strength tests were performed and the results, with a 95% confidence level, showed that substrate ceramic and treatment in the roughcast exhibited a better behavior regarding the distribution of the tensile bond strength of the tested specimens. However, no significant differences of the amount of addition used (0%, 5%, 10% and 15%) on the tensile bond strength were observed.


2021 ◽  
Vol 11 (11) ◽  
pp. 5008
Author(s):  
Juan José del Coz-Díaz ◽  
Felipe Pedro Álvarez-Rabanal ◽  
Mar Alonso-Martínez ◽  
Juan Enrique Martínez-Martínez

The thermal inertia properties of construction elements have gained a great deal of importance in building design over the last few years. Many investigations have shown that this is the key factor to improve energy efficiency and obtain optimal comfort conditions in buildings. However, experimental tests are expensive and time consuming and the development of new products requires shorter analysis times. In this sense, the goal of this research is to analyze the thermal behavior of a wall made up of lightweight concrete blocks covered with layers of insulating materials in steady- and transient-state conditions. For this, numerical and experimental studies were done, taking outdoor temperature and relative humidity as a function of time into account. Furthermore, multi-criteria optimization based on the design of the experimental methodology is used to minimize errors in thermal material properties and to understand the main parameters that influence the numerical simulation of thermal inertia. Numerical Finite Element Models (FEM) will take conduction, convection and radiation phenomena in the recesses of lightweight concrete blocks into account, as well as the film conditions established in the UNE-EN ISO 6946 standard. Finally, the numerical ISO-13786 standard and the experimental results are compared in terms of wall thermal transmittance, thermal flux, and temperature evolution, as well as the dynamic thermal inertia parameters, showing a good agreement in some cases, allowing builders, architects, and engineers to develop new construction elements in a short time with the new proposed methodology.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 162
Author(s):  
A.A. Jameei ◽  
S. Pietruszczak

This paper provides a mathematical description of hydromechanical coupling associated with propagation of localized damage. The framework incorporates an embedded discontinuity approach and addresses the assessment of both hydraulic and mechanical properties in the region intercepted by a fracture. Within this approach, an internal length scale parameter is explicitly employed in the definition of equivalent permeability as well as the tangential stiffness operators. The effect of the progressive evolution of damage on the hydro-mechanical coupling is examined and an evolution law is derived governing the variation of equivalent permeability with the continuing deformation. The framework is verified by a numerical study involving 3D simulation of an axial splitting test carried out on a saturated sample under displacement and fluid pressure-controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a fully implicit time integration scheme.


2012 ◽  
Vol 557-559 ◽  
pp. 850-853
Author(s):  
Ning Zhao ◽  
Yu Long Liu ◽  
Gen Hui Gao

Sulfur Extended Asphalt Modified (SEAM) is a newly developed asphalt modifier. The principal purpose of this paper is to study the performance of SEAM modified asphalt under the low temperature. Through the Low-temperature splitting test and the Low-temperature bending test .It indicated that the SEAM enhances the performance of asphalt under the low temperature.


Sign in / Sign up

Export Citation Format

Share Document