scholarly journals Ecological quality in freshwater streams is reflected across all three domains of life

2021 ◽  
Vol 130 ◽  
pp. 108059
Author(s):  
Nadieh de Jonge ◽  
Franziska Kuntke ◽  
Martin Hesselsøe ◽  
Jeppe Lund Nielsen
Authorea ◽  
2020 ◽  
Author(s):  
Nadieh de Jonge ◽  
Franziska Kuntke ◽  
Martin Hesselsoe ◽  
Jeppe Nielsen

2021 ◽  
Vol 4 ◽  
Author(s):  
Nadieh de Jonge ◽  
Martin Hesselsøe ◽  
Jeppe Nielsen

The Water Framework Directive dictates that all European surface waters must have an ecological quality of good or better. The need for regular and comparable ecological quality assessments drives the development of DNA-based approaches for biomonitoring in freshwater systems. Water quality assessments are traditionally based on biological quality elements (BQE) such as fish, plants and other fauna. Previous studies have shown the potential of metabarcoding as a potential supplement to traditional morphology-based approaches to determine water quality indices. Metabarcoding of the macroinvertebrate community on unsorted bulk samples has the ability to profile freshwater streams into at least 7 water quality categories Kuntke et al. (2020). A follow-up study using the same locations shows that a broad range barcode targeting the ribosomal 16S/18S RNA genes simultaneously demonstrated that ecological quality is reflected in all environmental DNA; the eukaryotic communities, and perhaps even more so, in the microbiome of the sampled streams (unpublished). The relationship between water quality and microbial communities is well-known, but not well-described. Healthy compositions of microbiota are vital for the functioning of many organisms, and this principle extends to the ecosystem level as well. The microbiome of freshwater streams therefore represents a great untapped potential in the development of DNA-based monitoring methods. The aim of this work was to explore links between water quality, environmental DNA collected from bulk and sediment samples, as well as individual macroinvertebrates with relevance for freshwater streams. Previous work on invertebrate communities Kuntke et al. (2020), and bulk sample analysis (total 53 streams) (unpublished) was combined with metabarcoding data of microbial communities from an additional 31 Danish stream sediments, as well as 140 macroinvertebrate indicator species. Metabarcoding of freshwater stream bulk and sediment samples has revealed strong parallels to conventional fauna observations in relation to estimations of water quality. Both the invertebrate and microbial community diversity followed the general trend of increasing to a plateau with higher water quality (data not shown). Macroinvertebrate composition (Fig. 1a) and sediment microbiome composition (Fig. 1b) were observed to be present on a gradient in relation to water quality, with individual taxa being either more, equally or less abundant with changing water quality, and only few solely related to a single category. Microbial populations associated to poor oxygenation (Methylomonadaceae, Rhodocyclaceae), as well as faecal contaminations (Anaerolineaceae, Lentimicrobiaceae) were abundantly observed in sediments of lower ecological quality. This equates to presence of macroinvertebrates able to survive in polluted environments with poor oxygen conditions. Part of the sediment microbiome was also found to be associated to the analysed macroinvertebrate species (Fig. 1c). However, the invertebrates also had their own unique and diverse microbiota, including known endosymbionts (Wolbachia, Rickettsia) and other insect associated microbiota (Acinetobacter, Chryseobacterium). Current sequencing platforms and high quality databases combined with advanced statistical analyses have made it possible to begin the development of modified assessment protocols based on DNA analyses, and could potentially lead to entirely new ecological quality indices for the prediction of water quality. Microbes can be very sensitive to environmental changes, and harbour potential indicator organisms for e.g. pollution, and by extension, water quality in a given stream. Microbiome data is abundant, and easy to obtain from all types of environmental samples, including those collected for metabarcoding of existing BQE such as macroinvertebrates. Exploring the use of sediment and fauna microbiomes has the potential to yield a wealth of new information relating to how ecosystems reflect water quality, and may provide additional indicators for use in DNA-based water quality assessment methods.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karin Holmfeldt ◽  
Emelie Nilsson ◽  
Domenico Simone ◽  
Margarita Lopez-Fernandez ◽  
Xiaofen Wu ◽  
...  

AbstractThe deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 430
Author(s):  
Vasso Apostolopoulos ◽  
Joanna Bojarska ◽  
Tsun-Thai Chai ◽  
Sherif Elnagdy ◽  
Krzysztof Kaczmarek ◽  
...  

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1155
Author(s):  
Eva Garcia-Lopez ◽  
Paula Alcazar ◽  
Cristina Cid

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Sign in / Sign up

Export Citation Format

Share Document