A novel class of ethacrynic acid derivatives as promising drug-like potent generation of anticancer agents with established mechanism of action

2016 ◽  
Vol 122 ◽  
pp. 656-673 ◽  
Author(s):  
Serge Mignani ◽  
Nabil El Brahmi ◽  
Saïd El Kazzouli ◽  
Laure Eloy ◽  
Delphine Courilleau ◽  
...  
2019 ◽  
Vol 19 (9) ◽  
pp. 1080-1102 ◽  
Author(s):  
Ghansham S. More ◽  
Asha B. Thomas ◽  
Sohan S. Chitlange ◽  
Rabindra K. Nanda ◽  
Rahul L. Gajbhiye

Background & Objective: :Nitrogen mustard derivatives form one of the major classes of anti-cancer agents in USFDA approved drugs list. These are polyfunctional alkylating agents which are distinguished by a unique mechanism of adduct formation with DNA involving cross-linking between guanine N-7 of one strand of DNA with the other. The generated cross-linking is irreversible and leads to cell apoptosis. Hence it is of great interest to explore this class of anticancer alkylating agents.Methods::An exhaustive list of reviews, research articles, patents, books, patient information leaflets, and orange book is presented and the contents related to nitrogen mustard anti-cancer agents have been reviewed. Attempts are made to present synthesis schemes in a simplified manner. The mechanism of action of the drugs and their side effects are also systematically elaborated.Results::This review provides a platform for understanding all aspects of such drugs right from synthesis to their mechanism of action and side effects, and lists USFDA approved ANDA players among alkylating anticancer agents in the current market.Conclusion: :Perusing this article, generic scientists will be able to access literature information in this domain easily to gain insight into the nitrogen mustard alkylating agents for further ANDA development. It will help the scientific and research community to continue their pursuit for the design of newer and novel heterocyclic alkylating agents of this class in the coming future.


Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 16
Author(s):  
Hrstka ◽  
Skoupilová ◽  
Bartošík ◽  
Sommerová ◽  
Karban ◽  
...  

Chemotherapy is an essential treatment that still plays a vital role in cancer treatment worldwide. The ferrocene derivatives of the general formula [Fe{(η5‑C5H4CH2(p‑C6H4)CH2(N‑het)}2] bearing modified six and five membered N-heterocycles were tested in vitro for their cytotoxic properties against ovarian cancer cell lines A2780 and SK-OV-3. These ferrocene complexes displayed cytotoxicity in low micromolar concentrations against both cell lines. To study cellular uptake of particular ferrocenes into tumor cells, we used differential pulse voltammetry and ICP-MS. We confirmed the crucial role of transferrin receptors in the process of intracellular accumulation of these ferrocenes. Interestingly, the rate of intracellular accumulation of particular ferrocenes clearly mirrored the cytotoxicity of these organometallic compounds. Deeper investigation of the mechanism by which ferrocenes kill tumor cells revealed induction of apoptosis associated with significant increase of reactive oxygen species. In conclusion, our screening identified several ferrocene derivatives exerting promising cytostatic activity in vitro. Further investigation led to the identification of the mechanism of action of these potential anticancer agents, which represents an important milestone in preclinical anticancer drug discovery programs. This work was supported by the project MEYS-NPS I-LO1413, MH CZ-DRO (MMCI, 00209805) and Czech Science Foundation project 17-05838S.


2019 ◽  
Vol 48 (15) ◽  
pp. 4788-4793 ◽  
Author(s):  
Wenli Ma ◽  
Lihua Guo ◽  
Zhenzhen Tian ◽  
Shumiao Zhang ◽  
Xiangdong He ◽  
...  

Most half-sandwich metal anticancer complexes are non-fluorescent, which results in an uncertain mechanism of action (MoA).


2019 ◽  
Vol 11 (15) ◽  
pp. 1929-1952 ◽  
Author(s):  
Adileh Ayati ◽  
Saeed Emami ◽  
Setareh Moghimi ◽  
Alireza Foroumadi

Cancer is known as one of the main causes of death in the world; and many compounds have been synthesized to date with potential use in cancer therapy. Thiazole is a versatile heterocycle, found in the structure of many drugs in use as well as anticancer agents. This review provides an overview of recent advances in thiazole-bearing compounds as anticancer agents with particular emphasis on their mechanism of action in cancerous cells. Chemical designs, structure–activity relationships and relevant preclinical properties have been comprehensively described.


2019 ◽  
Vol 12 (4) ◽  
pp. 146 ◽  
Author(s):  
Claudia Riccardi ◽  
Domenica Musumeci ◽  
Marco Trifuoggi ◽  
Carlo Irace ◽  
Luigi Paduano ◽  
...  

The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document