scholarly journals Hydrometeorology for plant omics: potential evaporation as a key index for transcriptome in rice

Author(s):  
Tsuneo Kuwagata ◽  
Mari Murai-Hatano ◽  
Maya Matsunami ◽  
Shingo Terui ◽  
Atsushi J. Nagano ◽  
...  
2012 ◽  
Vol 16 (7) ◽  
pp. 1817-1831 ◽  
Author(s):  
F. Alkhaier ◽  
G. N. Flerchinger ◽  
Z. Su

Abstract. Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1277 ◽  
Author(s):  
Jing Zhao ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng

Quantifying the relative contributions of climate variability and human activity to streamflow change is important for effective water resource use and management. Four sub-catchments of the Wei River Basin (WRB) in the Loess Plateau in China were selected as the study region, where the evolution of parameter α from the latest Budyko equation (Wang-Tang equation) was explored using an 11-year moving window. The elasticity of streamflow was derived from the climatic aridity index, represented by the ratio of annual potential evaporation ( E P ) to annual precipitation ( P ), and catchment characteristics as represented by α . The effects of climate change and human activities on streamflow change during 1971–2010 were quantified with climate elasticity and decomposition methods. The contributions of different types of human activities to streamflow were further empirically determined using the water and soil conservation method. Results indicate that (1) under the same climate condition ( P and E P ), a higher value of α caused an increase in evaporation rate ( E / P ) and a decrease in runoff. Changes in these hydrological variables led to a subsequent reduction in streamflow in the WRB; (2) The absolute value of the precipitation elasticity was larger than the potential evaporation elasticity, indicating that streamflow change was more sensitive to precipitation; (3) The results based on the two methods were consistent. Climate change and human activities contributed to the decrease in streamflow by 29% and 71%, respectively, suggesting that human activities have exerted more profound impacts on streamflow in the study region; (4) Contributions of different water and soil conservation measures to streamflow reduction were calculated and sorted in descending order: Irrigation, industrial and domestic consumption, terrace, afforestation, reservoirs, check-dams, then grass-planting.


2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


1984 ◽  
Vol 102 (2) ◽  
pp. 415-425 ◽  
Author(s):  
M. McGowan ◽  
P. Blanch ◽  
P. J. Gregory ◽  
D. Haycock

SummaryShoot and root growth and associated leaf and soil water potential relations were compared in three consecutive crops of winter wheat grown in the same field. Despite a profuse root system the crop grown in the second drought year (1976) failed to dry the soil as throughly as the crops in 1975 and 1977. Measurements of plant water potential showed that the restricted utilization of soil water reserves by this crop was associated with failure to make any significant osmotic adjustment, leading to premature loss of leaf turgor and stomatal closure. The implications of these results for models to estimate actual crop evaporation from values of potential evaporation are discussed.


1958 ◽  
Vol 50 (3) ◽  
pp. 243-252 ◽  
Author(s):  
H. H. Nicholson ◽  
D. H. Firth

An account is given of a field experiment in the control of ground water-level in a Fen peat soil, together with its results on the yields of crops in a six-course rotation.The seasonal variations in rainfall are presented in terms of potential evaporation and soil moisture deficit. The effect of the water-level on the moistness of the soil above it is indicated. Even in a wet summer, drying was perceptible within 18–20 in. of the ground water-level between successive falls of rain.The fluctuations of the ground water-levels are discussed. Those of the high water-levels were chiefly due to individual incidences of rain causing rises short in duration, but sufficient in the case of water-levels within 20 in. of the surface to cause total waterlogging and surface ponding. Those of the deep water-levels were most influenced by evaporation, with steady and persistent falls during any rain-free period.The deterioration of the physical condition of the soil over high water-levels is shown in the result of sieving tests. In 6 years the loss of tilth over waterlevels within 20 in. of the surface was very marked and was discernible over those as low as 30 in.The possibilities of effectively using high ground water-levels occasionally in soils in good condition are shown by the results with celery and potatoes.


Author(s):  
Andrey D. PLOTNIKOV ◽  
Aleksandr V. VODOLAZHSKIY ◽  
Natalya S. YAKUPOVA

The paper represents requirements for cryogenic grease lubricants used in the rocket and space technology. Data on lubricants based on perfluoropolyether liquid FEN is provided. New lubricant testing methods enabling to analyze their chemical composition and low-temperature characteristics are proposed. Quoted are investigation results for the equivalents of previously used cryogenic lubricants NIKA, NIRA and «Ametist». A practical relevance of the paper has been proven by introduction of low-temperature lubricants «Sever» currently being used in rocket and space items, as well аs successful application of the developed lubricant incoming inspection procedures at RSC Energia. Key words: low-temperature lubricant, perfluoropolyether liquid FEN, viscosity, solidification temperature, IR spectrum, potential evaporation.


Author(s):  
Wouter H. Maes ◽  
Pierre Gentine ◽  
Niko E. C. Verhoest ◽  
Diego G. Miralles

2013 ◽  
Vol 17 (11) ◽  
pp. 4625-4639 ◽  
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
A. Tuzet ◽  
K. Laval

Abstract. Potential evaporation (ETP) is a basic input for many hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman–Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSMs). This study presents an improved method, developed in the ORCHIDEE LSM, which consists of estimating ETP through an unstressed surface-energy balance (USEB method). The results confirm the quality of the estimation which is currently implemented in the model (Milly, 1992). The ETP underlying the reference evaporation proposed by the Food and Agriculture Organization, FAO, (computed at a daily time step) has also been analysed and compared. First, a comparison for a reference period under current climate conditions shows that USEB and FAO's ETP estimations differ, especially in arid areas. However, they produce similar values when the FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by that of the model's. Furthermore, if the vapour pressure deficit (VPD) estimated for the FAO's equation, is substituted by ORCHIDEE's VPD or its humidity gradient, the agreement between the daily mean estimates of ETP is further improved. In a second step, ETP's sensitivity to climate change is assessed by comparing trends in these formulations for the 21st century. It is found that the USEB method shows a higher sensitivity than the FAO's. Both VPD and the model's humidity gradient, as well as the aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to two empirical approximations based on net radiation and mass transfer (Priestley–Taylor and Rohwer, respectively). The sensitivity of these ETP estimates is compared to the one provided by USEB to test if simplified equations are able to reproduce the impact of climate change on ETP.


Sign in / Sign up

Export Citation Format

Share Document