Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution

2020 ◽  
Vol 198 ◽  
pp. 108151
Author(s):  
P.S. Apaolaza ◽  
M. Busch ◽  
E. Asin-Prieto ◽  
K. Peynshaert ◽  
R. Rathod ◽  
...  
Author(s):  
Korogiannaki Myrto ◽  
Samsom Michael ◽  
Jones Lyndon ◽  
Schmidt Tannin ◽  
Sheardown Heather

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3324
Author(s):  
Amine Laradji ◽  
Bedia Karakocak ◽  
Alexander Kolesnikov ◽  
Vladimir Kefalov ◽  
Nathan Ravi

The ocular immune privilege is a phenomenon brought about by anatomical and physiological barriers to shield the eye from immune and inflammation responses. While this phenomenon is beneficial for eyes protection, it is, at the same time, a hindrance for drug delivery to the posterior segment of the eye to treat retinal diseases. Some ocular barriers can be bypassed by intravitreal injections, but these are associated with several side effects and patient noncompliance, especially when frequent injections are required. As an alternative, applying drugs as an eye drop is preferred due to the safety and ease. This study investigated the possible use of topically-applied hyaluronic acid-coated gold nanoparticles as drug delivery vehicles to the back of the eye. The coated gold nanoparticles were topically applied to mouse eyes, and results were compared to topically applied uncoated gold nanoparticles and phosphate-buffered saline (PBS) solution. Retina sections from these mice were then analyzed using fluorescence microscopy, inductively coupled plasma mass spectrometry (ICP-MS), and transmission electron microscopy (TEM). All characterization techniques used in this study suggest that hyaluronic acid-coated gold nanoparticles have higher distribution in the posterior segment of the eye than uncoated gold nanoparticles. Electroretinogram (ERG) analysis revealed that the visual function of mice receiving the coated gold nanoparticles was not affected, and these nanoparticles can, therefore, be applied safely. Together, our results suggest that hyaluronic acid-coated gold nanoparticles constitute potential drug delivery vehicles to the retina when applied noninvasively as an eye drop.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dong Ju Kim ◽  
Mi-Young Jung ◽  
Joo-Hee Park ◽  
Ha-Jin Pak ◽  
Martha Kim ◽  
...  

AbstractIntraocular antibiotic delivery is an important technique to prevent bacterial infection after ophthalmic surgery, such as cataract surgery. Conventional drug delivery methods, such as antibiotic eye drops, have limitations for intraocular drug delivery due to the intrinsic barrier effect of the cornea. Therefore, frequent instillation of antibiotic eyedrops is necessary to reach a sufficient bactericidal concentration inside the eye. In this study, an intraocular implant, MXF-HA, that combines hyaluronic acid (HA) and moxifloxacin (MXF) was developed to increase the efficiency of intraocular drug delivery after surgery. MXF-HA is manufactured as a thin, transparent, yellow-tinted membrane. When inserted into the eye in a dry state, MXF-HA is naturally hydrated and settles in the eye, and the MXF contained therein is delivered by hydrolysis of the polymer over time. It was confirmed through in vivo experiments that MXF delivery was maintained in the anterior chamber of the eye at a concentration sufficient to inhibit Pseudomonas aeruginosa and Staphylococcus aureus for more than 5 days after implantation. These results suggest that MXF-HA can be utilized as a potential drug delivery method for the prevention and treatment of bacterial infections after ophthalmic surgery.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2021 ◽  
Vol 26 (5) ◽  
pp. 509-521
Author(s):  
Tamara Athamneh ◽  
Adil Amin ◽  
Edit Benke ◽  
Rita Ambrus ◽  
Pavel Gurikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document