Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence

2012 ◽  
Vol 29 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Yuhua Chang ◽  
Weimin Gu ◽  
Lynne McLandsborough
2021 ◽  
Vol 12 ◽  
Author(s):  
Ibtissem Doghri ◽  
Tamazight Cherifi ◽  
Coralie Goetz ◽  
François Malouin ◽  
Mario Jacques ◽  
...  

Listeria monocytogenes (L. monocytogenes) is often associated with processed food as it can form biofilms that represent a source of contamination at all stages of the manufacturing chain. The control and prevention of biofilms in food-processing plants are of utmost importance. This study explores the efficacy of prospect molecules for counteracting bacterial mechanisms leading to biofilm formation. The compounds included the phytomolecule tomatidine, zinc chloride (ZnCl2), ethylenediaminetetraacetic acid (EDTA), and a more complexed mixture of bacterial compounds from coagulase-negative staphylococci (CNS exoproducts). Significant inhibition of L. monocytogenes biofilm formation was evidenced using a microfluidic system and confocal microscopic analyses (p < 0.001). Active molecules were effective at an early stage of biofilm development (≥50% of inhibition) but failed to disperse mature biofilms of L. monocytogenes. According to our findings, prevention of surface attachment was associated with a disruption of bacterial motility. Indeed, agar cell motility assays demonstrated the effectiveness of these molecules. Overall, results highlighted the critical role of motility in biofilm formation and allow to consider flagellum-mediated motility as a promising molecular target in control strategies against L. monocytogenes in food processing environments.


Author(s):  
S. R. Warke ◽  
V. C. Ingle ◽  
N. V. Kurkure ◽  
P. A. Tembhurne ◽  
Minakshi Prasad ◽  
...  

Listeria monocytogenes, an opportunistic food borne pathogen can cause serious infections in immunocompromised individuals. L. monocytogenes is capable of producing biofilm on the surface of food processing lines and instruments.The biofilm transfers contamination to food products and impose risk to public health. In the present study biofilm producing ability of L. monocytogenes isolates were investigated phenotypically and genotypically by microtiter assay and multiplex PCR, respectively. Out of 38 L. monocytogenes isolates 14 were recovered from animal clinical cases, 12 bovine environment and 12 from milk samples. A total of 3 (21.42%) clinical, 2 (16.66%) environment and 3 (25%) milk samples respectively, revealed biofilm production in microtiter assay. Cumulative results showed that 23 (60.52%) out of 38 strains of L. monocytogenes were positive for luxS and flaA gene and 1 (2.63%) was positive only for the flaA gene.


Chemosphere ◽  
2021 ◽  
pp. 131403
Author(s):  
Guirong Su ◽  
Shuzhen Li ◽  
Xiaotao Deng ◽  
Liang Hu ◽  
Loganathan Praburaman ◽  
...  

2013 ◽  
Vol 165 (3) ◽  
pp. 259-264 ◽  
Author(s):  
Sachin R. Kadam ◽  
Heidy M.W. den Besten ◽  
Stijn van der Veen ◽  
Marcel H. Zwietering ◽  
Roy Moezelaar ◽  
...  

Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3782-3790 ◽  
Author(s):  
Stijn van der Veen ◽  
Tjakko Abee

The food-borne pathogen Listeria monocytogenes is able to form biofilms in food processing environments. Since biofilms are generally difficult to eradicate during clean-up procedures, they pose a major risk for the food industry. Stress resistance mechanisms involved in L. monocytogenes biofilm formation and disinfectant resistance have, to our knowledge, not been identified thus far. In this study, we investigated the role of hrcA, which encodes the transcriptional regulator of the class I heat-shock response, and dnaK, which encodes a class I heat-shock response chaperone protein, in static and continuous-flow biofilm formation and resistance against benzalkonium chloride and peracetic acid. Induction of both hrcA and dnaK during continuous-flow biofilm formation was observed using quantitative real-time PCR and promoter reporters. Furthermore, in-frame deletion and complementation mutants of hrcA and dnaK revealed that HrcA and DnaK are required to reach wild-type levels of both static and continuous-flow biofilms. Finally, disinfection treatments of planktonic-grown cells and suspended static and continuous-flow biofilm cells of wild-type and mutants showed that HrcA and DnaK are important for resistance against benzalkonium chloride and peracetic acid. In conclusion, our study revealed that HrcA and DnaK are important for L. monocytogenes biofilm formation and disinfectant resistance.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Dorota Kościelniak ◽  
Iwona Gregorczyk-Maga ◽  
Anna Jurczak ◽  
Małgorzata Staszczyk ◽  
Iwona Kołodziej ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yunge Liu ◽  
Lina Wu ◽  
Jina Han ◽  
Pengcheng Dong ◽  
Xin Luo ◽  
...  

The aim of this study was to assess the efficacy of four natural antimicrobial compounds (cinnamaldehyde, eugenol, resveratrol and thymoquinone) plus a control chemical disinfectant (sodium hypochlorite) in inhibiting biofilm formation by Listeria monocytogenes CMCC54004 (Lm 54004) at a minimum inhibitory concentration (MIC) and sub-MICs. Crystal violet staining assay and microscopic examination were employed to investigate anti-biofilm effects of the evaluated compounds, and a real-time PCR assay was used to investigate the expression of critical genes by Lm 54004 biofilm. The results showed that five antimicrobial compounds inhibited Lm 54004 biofilm formation in a dose dependent way. Specifically, cinnamaldehyde and resveratrol showed better anti-biofilm effects at 1/4 × MIC, while sodium hypochlorite exhibited the lowest inhibitory rates. A swimming assay confirmed that natural compounds at sub-MICs suppressed Lm 54004 motility to a low degree. Supporting these findings, expression analysis showed that all four natural compounds at 1/4 × MIC significantly down-regulated quorum sensing genes (agrA, agrC, and agrD) rather than suppressing the motility- and flagella-associated genes (degU, motB, and flaA). This study revealed that sub-MICs of natural antimicrobial compounds reduced biofilm formation by suppressing the quorum sensing system rather than by inhibiting flagella formation.


2018 ◽  
Vol 3 (1) ◽  
pp. 28-31
Author(s):  
Natalia Wiktorczyk ◽  
Katarzyna Grudlewska ◽  
Krzysztof Skowron ◽  
Grzegorz Gryń ◽  
Eugenia Gospodarek-Komkowska

Sign in / Sign up

Export Citation Format

Share Document