Physicochemical changes in fresh-cut wax apple (Syzygium samarangenese [Blume] Merrill & L.M. Perry) during storage

2011 ◽  
Vol 127 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Suriyan Supapvanich ◽  
Jirapon Pimsaga ◽  
Panneewan Srisujan
2021 ◽  
Vol 7 (3) ◽  
pp. 1-6
Author(s):  
Luh Suriati ◽  

The effect of the application of calcium chloride on the physicochemical changes of fresh-cut tropical fruits during storage processes was evaluated.


2022 ◽  
Vol 184 ◽  
pp. 111755
Author(s):  
Ya-li Li ◽  
Shuang Liu ◽  
Shu-qi Chen ◽  
Arif Rashid ◽  
Li Wang ◽  
...  

2021 ◽  
Vol 6 (4) ◽  
pp. 988-999
Author(s):  
Luh Suriati ◽  
◽  
I Made Supartha Utama ◽  
Bambang Admadi Harsojuwono ◽  
Ida Bagus Wayan Gunam ◽  
...  

<abstract> <p>Fresh-cut mangosteen is a minimally processed product that is currently popular due to the requirement for fresh produce, quality, convenience, and minimal preparation. The process of skin removal causes fast deterioration in fresh-cut mangosteen. The nano edible coating of aloe vera gel or nano-ecogel can be applied to delay physicochemical changes in fresh-cut mangosteen. This study is intended to determine the effect of nano-ecogel concentration and immersion time to maintain the physicochemical characteristics of fresh-cut mangosteen. The effects of the concentration of nano-ecogel (100%, 75%, 50%, and 25%, <italic>v/v</italic>) and immersion time (1, 2, and 3 min) of fresh-cut mangosteen on acidity, vitamin C, water content, total dissolved solids, weight loss, texture and browning index were evaluated for nine days of cold storage. The concentration of nano-ecogel, immersion time, and interaction affected the acidity, water content, total dissolved solids, weight loss, and browning index of fresh-cut mangosteen. The best treatment was immersion in 50% nano-ecogel for 1 min.</p> </abstract>


2013 ◽  
Vol 33 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Cristiane Fagundes ◽  
Bruno Augusto Mattar Carciofi ◽  
Alcilene Rodrigues Monteiro

In this study, the influence of storage temperature and passive modified packaging (PMP) on the respiration rate and physicochemical properties of fresh-cut Gala apples (Malus domestica B.) was investigated. The samples were packed in flexible multilayer bags and stored at 2 °C, 5 °C, and 7 °C for eleven days. Respiration rate as a function of CO2 and O2 concentrations was determined using gas chromatography. The inhibition parameters were estimated using a mathematical model based on Michaelis-Menten equation. The following physicochemical properties were evaluated: total soluble solids, pH, titratable acidity, and reducing sugars. At 2 °C, the maximum respiration rate was observed after 150 hours. At 5 °C and 7 °C the maximum respiration rates were observed after 100 and 50 hours of storage, respectively. The inhibition model results obtained showed a clear effect of CO2 on O2 consumption. The soluble solids decreased, although not significantly, during storage at the three temperatures studied. Reducing sugars and titratable acidity decreased during storage and the pH increased. These results indicate that the respiration rate influenced the physicochemical properties.


2020 ◽  
Author(s):  
Michelina Soccio ◽  
Nadia Lotti ◽  
Andrea Munari ◽  
Esther Rebollar ◽  
Daniel E Martínez-Tong

<p>Nanostructured wrinkles were developed on fully bio-based poly(trimethylene furanoate) (PTF) films by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We investigated the effect of irradiation time on wrinkle formation using an UV pulsed laser source, at a fluence of 8 mJ/cm2. It was found that the pulse range between 600 and 4800 pulses allowed formation of periodic nanometric ripples. The nanostructured surface was studied using a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic physicochemical properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethyleneterephthalate), PET, and poly(trimethyleneterephthalate), PTT. The surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by nanomechanical force spectroscopy measurements. In particular, an increased Young’s modulus and higher stiffness for the nanostructured sample were measured. <br></p>


2011 ◽  
Vol 40 (8) ◽  
pp. 1141-1149 ◽  
Author(s):  
Su-Jin Kim ◽  
Shih-Hui Sun ◽  
Gi-Chang Kim ◽  
Haeng-Ran Kim ◽  
Ki-Sun Yoon

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 457b-457 ◽  
Author(s):  
Arunya Limbanyen ◽  
Jeffrey K. Brecht ◽  
Steven A. Sargent ◽  
Jerry A. Bartz

Preparation and handling procedures for fresh-cut mango slices were developed using `Tommy Atkins', `Haden', and `Palmer' mangoes. Fruit with yellow flesh color (no green color remaining) were optimum maturity for fresh-cut in terms of maintenance of acceptable appearance, texture, and taste; riper fruit developed flesh breakdown and more browning. Postharvest life of fresh-cut mango at 5 °C was 8 to 10 d with no evidence of chilling injury and was limited by flesh browning and loss of firmness. Respiration rates ranged from 32 to 40 mg CO2/kg per hr and ethylene production was typically ≤0.1 μl·kg–1·hr–1. The SSC changed little during storage, while pH varied from 3.5 to 4.8 and TA typically declined by 30% to 40%. Peeling to a depth of at least 2 mm and trimming flesh near the stem scar was necessary to minimize browning. Imported fruit that had been heat-treated for insect quarantine showed more severe browning than Florida fruit that had not been heat-treated. Preparation in aseptic conditions and dipping fruit in a 100 ppm NaOCl solution at pH 7 before and after peeling protected against decay during storage but dipping in chlorine after slicing without removal of excess liquid resulted in flesh translucency and breakdown. Dipping in 1% CaCl2 solution had no effect on flesh firmness (Instron) or browning. Storage in an unvented plastic clamshell container, which developed an atmosphere of 2.25% CO2 plus 19% O2, did not improve shelf life, but a MA of 10% CO2 plus 10% O2 was subjectively judged to slow browning and softening and resulted in no off flavor compared to air storage.


2018 ◽  
Vol 25 (25) ◽  
pp. 3036-3057 ◽  
Author(s):  
Xiao Sun ◽  
Guilong Zhang ◽  
Zhengyan Wu

According to the differences of microenvironments between tumors and healthy tissues, if the anticancer drugs or magnetic resonance contrast agents (MRCAs) can be controlled to precisely match physiological needs at targeted tumor sites, it is expected to acquire better therapeutic efficacy and more accurate diagnosis. Over the decade, stimuli-responsive nanomaterials have been a research hotspot for cancer treatment and diagnosis because they show many excellent functions, such as in vivo imaging, combined targeting drug delivery and systemic controlled release, extended circulation time, etc. Among the various stimuli nanosystems, pH-stimuli mode is regarded as the most general strategy because of solid tumors acidosis. When exposed to weakly acidic tumor microenvironment, pH-responsive nanoplatforms can generate physicochemical changes for their structure and surface characteristics, causing drug release or contrast enhancement. In this review, we focused on the designs of various pH-responsive nanoplatforms and discussed the mechanisms of controlled drug release or switch on-off in MRCAs. This review also discussed the efficacy of cellular internalization for these nanoplatforms via endocytosis of acidic tumor cell. Meanwhile, nanoplatforms response to acidic intracellular pH (such as endosome, lysosome) are discussed, along with approaches for improving drug release performance and magnetic resonance contrast enhancement. A greater understanding of these pH-responsive nanoplatforms will help design more efficient nanomedicine to address the challenges encountered in conventional diagnosis and chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document