Construction and characterization of antioxidative ferulic acid-grafted carboxylic curdlan conjugates and their contributions on β-carotene storage stability

2021 ◽  
Vol 349 ◽  
pp. 129166
Author(s):  
Zi-Wei Wang ◽  
Zhi-Hong Zhang ◽  
Ze-Ru Qiao ◽  
Wu-Dan Cai ◽  
Jing-Kun Yan
2020 ◽  
Vol 20 (4) ◽  
pp. 929 ◽  
Author(s):  
Agnes Dyah Novitasari Lestari ◽  
Dwi Siswanta ◽  
Ronny Martien ◽  
Mudasir Mudasir

This study aims to investigate the synthesis and characterization of β-carotene encapsulated in the blending matrices of starch (native and hydrolyzed starch)-chitosan/TPP (tripolyphosphate) by examining the effects of starch-to-chitosan weight ratio, β-carotene addition level, and TPP addition level on the encapsulation efficiency (EE) and loading capacity (LC); and to evaluate their storage stability. The encapsulation was done by the dropwise addition of ethanolic β-carotene dispersion into the blending matrices. The results of XRD analysis show that the encapsulation process significantly decreases the crystallinity of the starches, chitosan, and β-carotene. Scanning electron microscope (SEM) images reveal that the encapsulation products form irregular lumps. The EE and LC tend to increase with the increase in polymer fraction of matrices and β-carotene addition level, and with the decrease in TPP addition level. The addition of chitosan and the replacement of native starch by hydrolyzed starch tend to increase storage stability of β-carotene encapsulated in the starch matrix because chitosan can act as a good film-forming and antioxidant, while hydrolyzed starch contains amylose amylopectin with a short chain which is better in film-forming ability. These results promote the use of the hydrolyzed starch-chitosan/TPP as a matrix to enhance the stability β-carotene via encapsulations.


2020 ◽  
Vol 7 ◽  
Author(s):  
Xupeng Yuan ◽  
Jiahao Yan ◽  
Ruizhi Hu ◽  
Yanli Li ◽  
Ying Wang ◽  
...  

Recent evidences suggest that gut microbiota plays an important role in regulating physiological and metabolic activities of pregnant sows, and β-carotene has a potentially positive effect on reproduction, but the impact of β-carotene on gut microbiota in pregnant sows remains unknown. This study aimed to explore the effect and mechanisms of β-carotene on the reproductive performance of sows from the aspect of gut microbiota. A total of 48 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into three groups (n = 16) and fed with a basal diet or a diet containing 30 or 90 mg/kg of β-carotene from day 90 of gestation until parturition. Dietary supplementation of 30 or 90 mg/kg β-carotene increased the number of live birth to 11.82 ± 1.54 and 12.29 ± 2.09, respectively, while the control group was 11.00 ± 1.41 (P = 0.201). Moreover, β-carotene increased significantly the serum nitric oxide (NO) level and glutathione peroxidase (GSH-Px) activity (P < 0.05). Characterization of fecal microbiota revealed that 90 mg/kg β-carotene increased the diversity of the gut flora (P < 0.05). In particular, β-carotene decreased the relative abundance of Firmicutes including Lachnospiraceae AC2044 group, Lachnospiraceae NK4B4 group and Ruminococcaceae UCG-008, but enriched Proteobacteria including Bilophila and Sutterella, and Actinobacteria including Corynebacterium and Corynebacterium 1 which are related to NO synthesis. These data demonstrated that dietary supplementation of β-carotene may increase antioxidant enzyme activity and NO, an important vasodilator to promote the neonatal blood circulation, through regulating gut microbiota in sows.


2000 ◽  
Vol 6 (3) ◽  
pp. 197-205 ◽  
Author(s):  
T. Jimenez ◽  
M.A. Martinez-Anaya

Water soluble pentosans (WSP) from doughs and breads made with different enzyme preparations are characterized according to extraction yield, sugar composition, xylose/arabinose ratio and molecular weight (MW) distribution. Extraction yield was greater for dough than for bread samples, ranging from 0.94 to 1.64%, but bread extracts had a higher purity. Percent of pentoses in purified WSP was greater in pentosanase supplemented samples (28-55%) than in control and amylase containing samples (23-32%). Major sugars were xylose and arabinose, but glucose and mannose also appeared in the extracts. The xylose/arabinose (Xyl/Ara) ratio was 1.3-1.6 and underwent small changes during processing. Enzyme addition caused an increase in Xyl/Ara ratio, attributable to a debranching of arabinoxylans (AX) with higher degree of Ara substitution by arabinofuranosidase. Addition of pentosanases had a significant effect in increasing WSP with MW over 39 000, whereas those of low MW changed only slightly. MW distribution depended on enzyme source, and whereas some enzymes showed activity during fermentation others increased their activity during baking. No synergistic effects were observed in studied variables due to the combination of amylases with pentosanases. Protein in WSP extracts eluted together with ferulic acid suggesting they were linked, but not associated with a determined carbohydrate fraction.


2009 ◽  
Vol 15 (6) ◽  
pp. 545-552 ◽  
Author(s):  
Erzheng Su ◽  
Tao Xia ◽  
Liping Gao ◽  
Qianying Dai ◽  
Zhengzhu Zhang

Tannase was effectively immobilized on alginate by the method of crosslinking-entrapment-crosslinking with a high activity recovery of 76.6%. The properties of immobilized tannase were investigated. Its optimum temperature was determined to be 35 ° C, decreasing 10 °C compared with that of free enzyme, whereas the optimum pH of 5.0 did not change. The thermal and pH stabilities of immobilized tannase increased to some degree. The kinetic parameter, Km, for immobilized tannase was estimated to be 11.6 × 10-4 mol/L. Fe2+ and Mn2+ could activate the activity of immobilized tannase. The immobilized tannase was also applied to treat the tea beverage to investigate its haze-removing effect. The content of non-estern catechins in green tea, black tea and oolong tea increased by 52.17%, 12.94% and 8.83%, respectively. The content of estern catechins in green tea, oolong tea and black tea decreased by 20.0%, 16.68% and 5.04%, respectively. The anti-sediment effect of green tea infusion treated with immobilized tannase was significantly increased. The storage stability and reusability of the immobilized tannase were improved greatly, with 72.5% activity retention after stored for 42 days and 86.9% residual activity after repeatedly used for 30 times.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


Plant Science ◽  
2001 ◽  
Vol 161 (5) ◽  
pp. 1005-1010 ◽  
Author(s):  
In-Jung Kim ◽  
Kyong-Cheol Ko ◽  
Chan-Shick Kim ◽  
Won-Il Chung

2020 ◽  
Vol 4 ◽  
Author(s):  
Abdulazeez Olamilekan Elemosho ◽  
Emmanuel Anyachukwu Irondi ◽  
Emmanuel Oladeji Alamu ◽  
Emmanuel Oladipipo Ajani ◽  
Busie Maziya-Dixon ◽  
...  

Understanding the bioactive constituents and physicochemical components in cereals can provide insights into their potential health benefits and food applications. This study evaluated some bioactive constituents, carbohydrate profiles and pasting properties of 16 Striga-resistant hybrids, with yellow-orange kernel color and semi-flint to flint kernel texture, grown in two replications at two field locations in Nigeria. Carotenoids were quantified using HPLC, while other analyses were carried out using standard laboratory methods. The ranges of major carotenoids (μg/g) across the two locations varied from 2.6 to 9.6 for lutein, from 2.1 to 9.7 for zeaxanthin, from 0.8 to 2.9 for β-cryptoxanthin, from 1.4 to 4.1 for β-carotene; with total xanthophylls and provitamin A carotenoids (pVAC) ranging from 5.4 to 17.1 and 1.4 to 4.1 μg/g, respectively. Tannins content ranged from 2.1 to 7.3 mg/g, while phytate ranged from 0.4 to 7.1%. Starch, free sugar, amylose and amylopectin ranged from 40.1 to 88.9%, 1.09 to 6.5%, 15.0 to 34.1%, and 65.9 to 85.0%, respectively. Peak and final viscosities ranged from 57.8 to 114.9 and 120.3 to 261.6 Rapid Visco Units (RVU), respectively. Total xanthophylls, β-carotene, tannins, phytate, sugar, amylose and amylopectin levels, as well as peak and final viscosities, varied significantly (p < 0.05) across the hybrids. Amylose was significantly correlated (p < 0.05) with total xanthophylls, β-carotene, pVAC, phytate and pasting temperature (r = 0.3, 0.3, 0.4, 0.3, 0.3, respectively), but starch significantly correlated with tannins (r = 0.3). Hence, the Striga-resistant yellow-orange maize hybrids have a good combination of bioactive constituents, carbohydrate profile and pasting properties, which are partly influenced by hybrid.


Sign in / Sign up

Export Citation Format

Share Document