Silver-sepiolite (Ag-Sep) hybrid reinforced active gelatin/date waste extract (DSWE) blend composite films for food packaging application

2022 ◽  
Vol 369 ◽  
pp. 130983
Author(s):  
Vengatesan M. Rangaraj ◽  
Subramani Devaraju ◽  
K. Rambabu ◽  
Fawzi Banat ◽  
Vikas Mittal
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 767
Author(s):  
Elsa Díaz-Montes ◽  
Roberto Castro-Muñoz

Some of the current challenges faced by the food industry deal with the natural ripening process and the short shelf-life of fresh and minimally processed products. The loss of vitamins and minerals, lipid oxidation, enzymatic browning, and growth of microorganisms have been the main issues for many years within the innovation and improvement of food packaging, which seeks to preserve and protect the product until its consumption. Most of the conventional packaging are petroleum-derived plastics, which after product consumption becomes a major concern due to environmental damage provoked by their difficult degradation. In this sense, many researchers have shown interest in edible films and coatings, which represent an environmentally friendly alternative for food packaging. To date, chitosan (CS) is among the most common materials in the formulation of these biodegradable packaging together with polysaccharides, proteins, and lipids. The good film-forming and biological properties (i.e., antimicrobial, antifungal, and antiviral) of CS have fostered its usage in food packaging. Therefore, the goal of this paper is to collect and discuss the latest development works (over the last five years) aimed at using CS in the manufacture of edible films and coatings for food preservation. Particular attention has been devoted to relevant findings in the field, together with the novel preparation protocols of such biodegradable packaging. Finally, recent trends in new concepts of composite films and coatings are also addressed.


2021 ◽  
Author(s):  
Yamanappagouda Amaregouda ◽  
Kantharaju Kamanna ◽  
Tilak Gasti ◽  
Vijay Kumbar

Abstract Herein, we described novel biogenic preparation of the CuO nanorods and its surface modification with L-alanine amino acid accelerated by microwave irradiation. The effect of surface functionalized CuO nanorods on the polyvinyl alcohol/carboxymethyl cellulose film physico-mechanical properties were investigated through various characterization techniques. The tensile strength was improved from 28.58 ± 0.73 MPa to 43.40 ± 0.93 MPa, UV shielding ability and barrier to the water vapors were highly enhanced when PVA/CMC matrices filled with 8 wt% of CuO-L-alanine. In addition, the prepared films exhibited acceptable overall migration limit and readily undergoes soil burial degradation. Nevertheless, CuO-L-alanine incorporated films showed potent antioxidant activity against DPPH radicals and had high antibacterial activity against Staphylococcus aureus and Escherichia coli, and antifungal activity against Candida albicans and Candida tropicalis. Furthermore, the nanocomposite films showed negligible cytotoxic effect on HEK293 and Caco-2 cell lines. In these contexts, the developed nanocomposite films can be implementing as an active food packaging material.


2013 ◽  
Vol 829 ◽  
pp. 534-538 ◽  
Author(s):  
Alireza Shakeri ◽  
Sattar Radmanesh

Cellulose nanofibrils ( NF ) have several advantages such as biodegradability and safety toward human health. Zein is a biodegradable polymer with potential use in food packaging applications. It appears that polymer nanocomposites are one of the most promising applications of zein films. Cellulose NF were prepared from starting material Microcrystalline cellulose (MCC) by an application of a high-pressure homogenizer at 20,000 psi and treatment consisting of 15 passes. Methods such as atomic force microscopy were used for confirmation of nanoscale size production of cellulose. The average diameter 45 nm were observed. Zeincellulose NF nanocomposite films were prepared by casting ethanol suspensions of Zein with different amounts of cellulose NF in the 0% to 5%wt. The nanocomposites were characterized by using Fourier transform infrared spectroscopy ( FTIR ), Atomic force microscopy ( AFM ) and X-ray diffraction ( XRD ) analysis. From the FTIR spectra the various groups present in the Zein blend were monitored. The homogeneity, morphology and crystallinity of the blends were ascertained from the AFM and XRD data, respectively. The thermal resistant of the zein nanocomposite films improved as the nanocellulose content increased. These obtained materials are transparent, flexible and present significantly better physical properties than the corresponding unfilled Zein films.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayse Kalemtas ◽  
Hasan B. Kocer ◽  
Ahmet Aydin ◽  
Pinar Terzioglu ◽  
Gulsum Aydin

Abstract In the current study, ZnO/chitosan bio-composite films were produced via solution-casting method. Two different ZnO powders, micrometer (d50 ≅ 1.5 μm) and nanometer sized (d50 ≅ 100 nm), were used to investigate the effect of ZnO particle size and concentration (0, 2, and 8% w/w of chitosan) on the mechanical and antibacterial properties of the ZnO/chitosan bio-composite films. The incorporation of the ZnO powders into the chitosan film resulted in an increase in the tensile strength (TS) and a decrease in the elongation at break (EB) values. Mechanical test results revealed that TS and EB properties were considerably affected (p < 0.05) by the concentration and particle size of the ZnO reinforcement. Disc diffusion method demonstrated good antibacterial activities of bio-composite films containing high amount of ZnO (8% w/w of chitosan) against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Bacillus subtilis. The growth-limiting effect of the films was more pronounced for S. aureus and K. pneumoniae. Due to enhanced TS and imparted antibacterial activity of the produced ZnO/chitosan bio-composite films, these materials are promising candidates for applications such as food packaging, wound dressing, and antibacterial coatings for various surfaces.


2019 ◽  
Vol 134 ◽  
pp. 122-130 ◽  
Author(s):  
Yue-Chao Yang ◽  
Xiu-Wen Mei ◽  
Ya-Jie Hu ◽  
Li-Yuan Su ◽  
Jing Bian ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4910 ◽  
Author(s):  
Alejandro Aragón-Gutierrez ◽  
Marina P. Arrieta ◽  
Mar López-González ◽  
Marta Fernández-García ◽  
Daniel López

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.


Sign in / Sign up

Export Citation Format

Share Document