Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum

2021 ◽  
pp. 107069
Author(s):  
Mengjia Sun ◽  
Xiangyu Li ◽  
David Julian McClements ◽  
Min Xiao ◽  
Hongjian Chen ◽  
...  
2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 137-138
Author(s):  
Calvin Gibbons ◽  
Andrea K Watson ◽  
Galen E Erickson ◽  
Bradley M Boyd ◽  
Levi J McPhillips ◽  
...  

Abstract Algae oil production for Omega-3 fatty acid supplementation yields a byproduct called Condensed Algal Residue Solubles (CARS; 25.4% DM, 19.3% CP, 8.3% Fat, 9.96% Na on DM basis), de-oiled algae cells with residual fermentation substrates. This study evaluated the use of CARS in feedlot finishing diets. Crossbreed steers, (n=480) were blocked and stratified by initial body weight (BW) into 4 blocks, and assigned randomly to treatments. Treatments were designed as a 2 x 3 factorial with 3 inclusions of CARS (0, 2.5, 5% of diet DM) and 2 different base diets representing Northern and Southern Great Plains diets. The Southern diets contained steam flaked corn and dry distillers grains while the Northern diets had dry rolled and high moisture corn with wet distillers grains. CARS replaced corn in both diets. All blocks were harvested after 148 days on feed. Performance data were analyzed as a randomized block design with CARS inclusion, base diet, and interactions as fixed effects, BW block as a random effect and pen (n=48) as the experimental unit. Orthogonal contrasts were used to test linear and quadratic effects of CARS inclusion. There were no significant interactions between CARS inclusion and diet type (P ≥ 0.49). Main effects of CARS indicated positive quadratic responses for carcass adjusted ADG, G:F, 12th rib back fat, yield grade (P < 0.01; increasing to 2.5% inclusion, decreasing at 5%) and hot carcass weight was both linear and quadratic (P ≤ 0.01 and P ≥ 0.06 respectively; 969, 977, 935 as CARS increased). Linear decrease in DMI, final adjusted BW and ribeye area (P ≤ 0.01) as CARS increased. Cattle fed the Southern diets had greater ADG and G:F compared to Northern diets (P < 0.01). Including 2.5% CARS in the diet improved feed efficiency in both Northern and Southern based feedlot diets.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Lu ◽  
Eiriksson ◽  
Thorsteinsdóttir ◽  
Simonsen

Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 △5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 △5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.


2018 ◽  
Vol 9 (2) ◽  
pp. 418-433 ◽  
Author(s):  
Wan Maznah Wan Ishak ◽  
Haliza Katas ◽  
Ng Pei Yuen ◽  
Maizaton Atmadini Abdullah ◽  
Mohd Hanif Zulfakar

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4288 ◽  
Author(s):  
Maciej Jarzębski ◽  
Farahnaz Fathordoobady ◽  
Yigong Guo ◽  
Minghuan Xu ◽  
Anika Singh ◽  
...  

In this paper, we present the possibility of using pea protein isolates as a stabilizer for hempseed oil (HSO)-based water/oil emulsions in conjunction with lecithin as a co-surfactant. A Box-Behnken design was employed to build polynomial models for optimization of the ultrasonication process to prepare the emulsions. The stability of the system was verified by droplet size measurements using dynamic light scattering (DLS) as well as centrifugation and thermal challenge tests. The z-ave droplet diameters of optimized emulsion were 209 and 207 nm after preparation and 1 week storage, respectively. The concentration of free Linoleic acid (C18:2; n-6) was used for calculation of entrapment efficiency in prepared nanoemulsions. At optimum conditions of the process, up to 98.63% ± 1.95 of entrapment was achieved. FTIR analysis and rheological tests were also performed to evaluate the quality of oil and emulsion, and to verify the close-to-water like behavior of the prepared samples compared to the viscous nature of the original oil. Obtained results confirmed the high impact of lecithin and pea protein concentrations on the emulsion droplet size and homogeneity confirmed by microscopic imaging. The presented results are the first steps towards using hempseed oil-based emulsions as a potential food additive carrier, such as flavor. Furthermore, the good stability of the prepared nanoemulsion gives opportunities for potential use in biomedical and cosmetic applications.


2019 ◽  
Vol 26 (5) ◽  
pp. 369-378
Author(s):  
Asli Can Karaca

The goal of this research was to determine the physicochemical and emulsifying properties of pea protein, gum arabic, and maltodextrin and to investigate their potential for stabilizing black pepper seed oil emulsions and acting as carrier materials for spray dried microcapsules. The moisture content and water activity of pea protein and maltodextrin (∼5.5 g/100 g and ∼0.22) were found to be significantly lower than that of gum arabic (11.5 g/100 g and 0.46) whereas the glass transition temperatures of pea protein and maltodextrin (∼99.4 ℃) was significantly higher than that of gum arabic (72 ℃). Pea protein showed the highest viscosity (53.8 mPa s), the lowest surface tension (42.5 mN/m), and interfacial tension (10.5 mN/m) among the biopolymer materials studied. A mixture design was employed to investigate the effect of biopolymer formulation on droplet size and creaming stability of black pepper seed oil emulsions. Stable emulsions with relatively smaller droplet size were spray dried to produce microcapsules. Spray dried black pepper seed oil microcapsules produced with 1% pea protein and 39% maltodextrin had low surface oil (∼0.8%) and high encapsulation efficiency (95%). The results of this study suggest that pea protein in combination with maltodextrin can be used as carrier materials in encapsulation of black pepper seed oil.


2019 ◽  
Vol 49 (5) ◽  
pp. 866-885 ◽  
Author(s):  
Prashant Sahni ◽  
Poonam Aggarwal ◽  
Savita Sharma ◽  
Baljit Singh

PurposeThe purpose of this paper is to acquaint the readers with the insights regarding the interventions of microalgal technology for production of metabolites and functional ingredients from microalgae for food and nutraceutical application and exploration of microalgae biomass for food application.Design/methodology/approachVarious information databases such as journals, library catalogues and professional websites were used to collect information pertaining to application of microalgae in food and nutraceutical sector. Systematic review was made with recent studies covering the vital aspects of art of microalgae cultivation for metabolite production, functional ingredients from microalgae, market scenario and utilisation of microalgae biomass for the valorisation of the food products. Key points have been discussed after every section to highlight the practical implications to make this review more insightful for the readers.FindingsMicroalgal technology provides sustainable solution for its application in food and nutraceutical sector. The heart of metabolite production lies in the optimisation of cultivation conditions of microalgae. Wide array of functional components are obtained from microalgae. Microalgae offer an alternative source for omega-3 fatty acids. Microalgae is widely exploited for production of pigments, namely, ß-carotene, astaxanthin, lutein, phycocyanin and chlorophyll, that have important implication as natural colourants and nutraceuticals in food. Larger diversity of sterols found in microalgae confers bioactivity. Microalgae is finding its place in market shelves as nutraceuticals where its functional ingredients are in the form of powder, tablets, extract and beverages and in innovative products such as microalgae protein and fat, culinary algae oil and butter. Sprulina and Chlorella are popular choice for the supplementation of food products with microalgae biomass.Originality/valueThis is a comprehensive review that highlights the application of microalgal technology for the development of healthy food products and presents holistic intervention in food and nutraceutical sector.


2019 ◽  
Vol 247 ◽  
pp. 74-79 ◽  
Author(s):  
Jian Sun ◽  
Wen-yan Liu ◽  
Mei-qin Feng ◽  
Xing-lian Xu ◽  
Guang-hong Zhou
Keyword(s):  

Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 800 ◽  
Author(s):  
Xavier Cheseto ◽  
Steve B.S. Baleba ◽  
Chrysantus M. Tanga ◽  
Segenet Kelemu ◽  
Baldwyn Torto

Globally, there is growing interest to integrate insect-derived ingredients into food products. Knowledge of consumer perception to these food products is growing rapidly in the literature, but similar knowledge on the use of oils from African edible insects remains to be established. In this study, we (1) compared the chemistry of the oils from two commonly consumed grasshoppers, the desert locust Schistocerca gregaria and the African bush-cricket Ruspolia differens with those of olive and sesame oils; (2) compared the proximate composition of a baked product (cookie) prepared from the oils; (3) identified the potential volatiles and fatty acids contributing to the aroma and taste; and (4) examined acceptance and willingness to pay (WTP) for the baked product among consumers with no previous experience of entomophagy. Our results showed that the insect oils were compositionally richer in omega-3 fatty acids, flavonoids, and vitamin E than the plant oils. Proximate analysis and volatile chemistry revealed that differences in aroma and taste of the cookies were associated with their sources of oils. Consumers’ acceptance was high for cookies prepared with R. differens (95%) and sesame (89%) oils compared to those with olive and S. gregaria oils. Notably, cookies prepared with insect oils had more than 50% dislike in aroma and taste. Consumers’ willingness to pay for cookies prepared with insect oils was 6–8 times higher than for cookies containing olive oil, but 3–4 times lower than cookies containing sesame oil. Our findings show that integrating edible insect oils into cookies, entices people to ‘‘take the first step” in entomophagy by decreasing insect-based food products neophobia, thereby, contributing to consumers’ acceptance of the baked products. However, future research should explore the use of refined or flavored insect oils for bakery products to reduce off-flavors that might have been perceived in the formulated food products


Sign in / Sign up

Export Citation Format

Share Document