Necrostatin-1 enhances menadione/ascorbic acid–induced oxidative stress and their cytotoxic potential in human glioblastoma U251 cell line

2021 ◽  
Vol 177 ◽  
pp. S74-S75
Author(s):  
Ana Despotović ◽  
Ljubica Harhaji-Trajković ◽  
Vladimir Trajković ◽  
Gordana Tovilović-Kovačević ◽  
Nevena Zogović
2021 ◽  
Author(s):  
Hamed Samadi ◽  
Alireza Naderi Sohi ◽  
Hanieh Jafary ◽  
Fatemeh Kouhkan

Abstract Whereas several clinical trials are ongoing or have been completed examining the benefits of Ascorbic acid-based therapy of cancer patients, its efficacy at GBM treatment has not been sufficiently investigated. In the present study, the influence of L-Ascorbic acid (Vitamin C, VC) on two GBM cell lines (U87 and U251) was evaluated in terms of cytotoxicity, induction of cell cycle arrest, reactive oxygen species (ROS) production, and alteration in the level of GBM related microRNAs. The half maximal inhibitory concentration (IC50) of VC was obtained by Crystal Violet assay as 2 mM and 1.8 mM for U87 cell line following 24 and 48 h treatment, respectively. These values were obtained in a similar way for U251 cell line as 3.2 mM and 2.9 mM. Propidium iodide (PI) staining of the cells revealed that ascorbic acid caused cell cycle arrest in G2/M phase in both of studied GBM cell lines. Moreover, RT-qPCR results indicated that VC-treatment of GBM cell lines causes downregulation of Bcl-2 alongside increase in BAK-1 and BAX expressions. Flowcytometry-based DCFH assay confirmed drastic increase in reactive oxygen species (ROS) within U87 and U251 cells following VC-treatment. Eventually, study on microRNAs expression profile implied significant increase in four tumor suppressor miRNAs including miR-7, miR-34a, miR-128, and miR-182 in both of U87 and U251 cell lines after treatment with ascorbic acid. Besides, the expression levels of three onco-miRs (i.e., miR-10b in both of cell lines, miR-222 in U87 and miR-93 in U251) were significantly diminished.


2018 ◽  
Vol 16 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Rossella Gratton ◽  
Paola Maura Tricarico ◽  
Rafael Lima Guimaraes ◽  
Fulvio Celsi ◽  
Sergio Crovella

Background:Lopinavir and Ritonavir (LPV/r) treatment is widely used to prevent HIV mother-to-child transmission. Nevertheless, studies related to the impact of these compounds on patients, in particular in the foetus and newborns, are strictly required due to the controversial findings reported in the literature concerning possible neurologic side effects following the administration of these drugs.Objectives:In our study, we evaluated the impact of LPV/r treatment on the human glioblastoma U- 87 MG cell line.Methods:In order to evaluate the influence of Lopinavir and Ritonavir in terms of oxidative stress (ROS production), mitochondrial morphology and apoptotic cell death, the latter either in the presence or in the absence of caspase-3 and -9 inhibitors, we treated U-87 MG with increasing doses (0.1-1-10-25-50 µM) of Lopinavir and Ritonavir for 24h, either in single formulation or in combination. ROS production was measured by flow cytometry using H2DCFDA dye, mitochondrial morphology was evaluated using MitoRed dye and apoptotic cell death was monitored by flow cytometry using Annexin V-FITC and Propidium Iodide.Results:We observed that co-treatment with Lopinavir and Ritonavir (25 and 50 µM) promoted a significant increase in ROS production, caused mitochondrial network damage and induced apoptosis in a caspase-independent manner.Conclusion:Based on our findings, concordant with others reported in the literature, we hypothesize that LPV/r treatment could not be entirely free from side effects, being aware of the need of validation in in vivo models, necessary to confirm our results.


Author(s):  
Choudhuri D. ◽  
Bhattacharjee T.

Background : Toxicological consequences arising from exposure to mixtures of heavy metals especially at low, chronic and environmentally relevant doses are poorly recognised. In the present study, we evaluated effects of chronic exposure to combinations of three metals arsenic (As), cadmium (Cd) and lead (Pb) present frequently in drinking water on reproductive function and oxidative damage caused to reproductive organs of female rats. Method : Female rats were exposed to mixture of metals (As, Cdand Pb) for 90 consecutive days. The gain in body weight and weight of reproductive organs were recorded following autopsy on 91 stday. The oestrus cycle were monitored during entire treatment period. Numbers of corpora lutea, implantation sites, live fetus and survival of the fetus were evaluated in rats mated successfully with untreated male after completion of their respective treatment. Ovarian cholesterol, protein, ascorbic acid and enzyme Δ 5 -3β HSD levels were estimated. Serum levels of steroid hormones oestrogen and progesterone were estimated. Histopathological picture of both ovary and uterus were assessed. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidise (GPX) activity, amount of reduced glutathione (GSH) and malondyaldehyde (MDA) in blood, ovary and uterus were measured as biomarkers of oxidative stress. Results : The treated rats showed reduced body weight gain and reduction in the weight of ovary and uterus. Oestrus cycle was disrupted with continuous diestrous in treated animals. Number of corpora lutea, implantation sites and live fetus and the survival of fetus evaluate were reduced significantly in treated groups. The levels of ovarian cholesterol and ascorbic acid increased in treated rats with decrease Δ5 -3β HSD level. There was reduction in serum level of both the ovarian steroid hormones oestrogen and progesterone. The protein levels did not differ between the groups. There was a significant increase in levels of MDA and decrease in levels of all the antioxidant enzymes in treated group. Conclusion : The results revealed there was disruption to reproductive functions with decrease in stereoidogenic activity and associated oxidative stress in female rats treated with combination of mixture of metals (Cd, As and Pb) at low dose for 90 consecutive days.


2020 ◽  
Vol 14 ◽  
pp. 117863022093839
Author(s):  
Tania Rahman ◽  
Ar-Rafi Md. Faisal ◽  
Tahura Khanam ◽  
Hossain Uddin Shekhar

Perennial indoor environmental pollution in the textile industrial area is a potential health hazard for workers engaged in this line of work, resulting in mental aberration to severe health risks. This study was designed to investigate the indoor environmental quality of textile industries and correlate its effect on the occupational health and well-being of the textile workers by measuring plasma oxidative stress status in textile workers and healthy control subjects. Environmental samples were collected from 15 textile industries located in Dhaka division, and 30 volunteer textile workers and 30 volunteer office workers (control) aged 18 to 57 years participated in the study. The concentration of plasma ascorbic acid (P-ASC), plasma malondialdehyde (P-MDA), and plasma conjugated diene (P-CD) was measured in both groups. The noise level (78.0 ± 0.68 dB) and the formaldehyde level (141.80 ± 4.47 µg/m3) were found to be significantly higher in the indoor environmental area compared with those in the control area (70.17 ± 0.25 dB and 108.0 ± 0.76 µg/m3, respectively). Furthermore, the daily average concentration of suspended particulate matters (PMs), that is, PM2.5 (322.2 ± 13.46 µg/m3) and PM10 (411.0 ± 17.57 µg/m3), was also found to be significantly higher in the indoor environmental air compared with that in the control area (78.59 ± 1.66 and 174.0 ± 2.33 µg/m3, respectively). The levels of P-MDA (0.37 ± 0.03 nmol/L) and P-CD (14.74 ± 0.61 nmol/L) were significantly increased, whereas the level of P-ASC level (0.46 ± 0.04 mg/dL) was markedly decreased in the textile workers compared with the healthy control subjects (0.18 ± 0.01 nmol/L of P-MDA, 10.04 ± 0.44 nmol/L of P-CD, and 1.29 ± 0.06 mg/dL of P-ASC). The textile plants were found to have significantly elevated levels of indoor environmental pollutants compared with those in the control area, and the textile workers were significantly exposed to oxidative stresses compared with the control subjects. The use of noise pads and high-efficiency air filters is perhaps highly instrumental to put an end to this prevailing situation. Moreover, to overcome the oxidative stresses among workers, supplementation of antioxidant vitamins (ie, ascorbic acid and/or vitamin E) may be beneficial. In addition, to prevent serious health-related issues, proper precautions should be taken to protect the occupational health of the textile workers.


2021 ◽  
Vol 65 ◽  
pp. 126711
Author(s):  
Barbara Witt ◽  
Michael Stiboller ◽  
Stefanie Raschke ◽  
Sharleen Friese ◽  
Franziska Ebert ◽  
...  

2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Taslima Nigar ◽  
Annekathryn Goodman ◽  
Shahana Pervin

Abstract Purpose Over the past several decades, research has suggested reactive oxygen species act as cofactors for cervical cancer development. The aim of this study is to evaluate the antioxidant and lipid peroxidation status in cervical cancer patients in Bangladesh. Methods From December 2017 to 2018, a cross-sectional observational study was conducted on 50 cervical cancer patients and 50 controls. Plasma levels of lipid peroxidation and total antioxidant capacity were measured. The Student’s t test was used for statistical analysis. P values less than 0.05 were taken as a level of significance. Results There was a significant reduction in total antioxidant levels in patients with cervical cancer, 972.77 ± 244.22 SD µmol equivalent to ascorbic acid/L, compared to normal controls, 1720.13 ± 150.81 SD µmol equivalent to ascorbic acid/L (P < 0.001). Levels of lipid peroxidation were found to be significantly higher in cervical cancer, 7.49 ± 2.13 SD µmol/L, than in women without cervical cancer, 3.28 ± 0.58 SD µmol/L (P < 0.001). The cervical cancer patients had significantly higher levels of oxidative stress index (0.83 ± 0.31) in comparison to controls (0.19 ± 0.04) (P < 0.001). Conclusion There was an increased oxidative stress index due to imbalance between lipid peroxidation generation and total antioxidant capacity in cervical cancer patients. Further studies are needed to explore the role of oxidative stress as a cofactor for cervical carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document