Improvement of Anionic and Cationic Dyes Removal in Aqueous Solution by Indonesian Agro-Waste Oil Palm Empty Fruit Bunches through Silylation Approach

Author(s):  
Ozi A. Saputra ◽  
Martha Nauqinida ◽  
Kurnia ◽  
Septi Pujiasih ◽  
Triana Kusumaningsih ◽  
...  
Author(s):  
Kurnia Sandi ◽  
Ricky Andi Syahputra ◽  
Moondra Zubir

Research on metal adsorption isotherms with activated carbon oil palm empty fruit bunches in liquid waste. Oil palm empty fruit bunches are used as adsorbent for metal absorption. Oil palm empty fruit bunches are prepared at 105O C for 24 hours to get a constant weight then are characterized by SEM. Oil palm empty fruit bunches are heated at temperatures (400O C – 700O C) to get activated carbon. Re-characterization using SEM at optimum conditions shows that the pore surface is expanding. Then with a batch method for metal absorption (Cu, Pb, Hg) and analyzed using AAS. The most common absorption of activated carbon of oil palm empty fruit bunches is Cu (II). Based on the Langmuir and Freundlich R2 models close to 1, which means that multi-layer adsorption occurs.


2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Salmina Salmina

This study aims to know waste utilization of oil palm empty fruit bunches in Jorong Koto Sawah  Nagari Ujunggading District Of Lembah Melintang  West Pasaman. This type of research is descriptive. The population is head of the family in Jorong Koto Sawah Nagari Ujunggading District of Lembah Melintang  totaled  1141 households. Samples were taken by purposive sampling region (designation) with 3 Jorong Koto Sawah 1) Dusun Banjar Kapar, 2) Dusun Muara Simpang, 3) Dusun Tanjung Harapan which has the highest number of people in Jorong Koto Sawah. The sample of respondents was taken with the proportion of 25% of the number of households, so that a population of 100 families. Data collection through questionnaires or instruments. Techniques of analysis using the analysis of the percentage formula. The research found that: (1) Awareness of the utilization of waste palm empty fruit bunches are in less good criteria, with a percentage of 56,8%, (2) Public Participation on the utilization of waste oil palm empty fruit bunches are in less good criteria, with a percentage of 56,9%, and (3) Motivation Communities to the utilization of waste oil palm empty fruit bunches are in the criteria is not good, with a percentage of 53.5%


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Seyed Ali Zamani ◽  
Robiah Yunus ◽  
A. W. Samsuri ◽  
M. A. Mohd Salleh ◽  
Bahareh Asady

This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability.


2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Nur Haziqah Mohd. Nasir ◽  
Muhammad Abbas Ahmad Zaini ◽  
Siti Hamidah Mohd. Setapar ◽  
Hashim Hassan

This study aims to evaluate the adsorptive properties of oil palm empty fruit bunch for the removal of cationic pollutants in water. The untreated and hydrochloric acid-treated empty fruit bunches were characterized based on pH of adsorbent, specific surface area and surface functional groups. The adsorbents were then used to challenge varying concentrations of methylene blue dye and copper (II) in aqueous solution. Results show that the specific surface area of empty fruit bunch decreased upon the treatment with hydrochloric acid. The untreated adsorbent displays a higher equilibrium removal of the target pollutants due to its higher specific surface area of 28.4 m2/g. The maximum removal were recorded as 0.103 and 0.075 mmol/g for methylene blue and copper (II), respectively. Oil palm empty fruit bunch is a promising candidate for the removal of cationic pollutants in aqueous solution. 


2011 ◽  
Vol 56 (5) ◽  
pp. 1882-1891 ◽  
Author(s):  
Weihua Zou ◽  
Ke Li ◽  
Hongjuan Bai ◽  
Xiaolan Shi ◽  
Runping Han

2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


2020 ◽  
Vol 16 ◽  
Author(s):  
Reda M. El-Shishtawy ◽  
Abdullah M. Asiri ◽  
Nahed S. E. Ahmed

Background: Color effluents generated from the production industry of dyes and pigments and their use in different applications such as textile, paper, leather tanning, and food industries, are high in color and contaminants that damage the aquatic life. It is estimated that about 105 of various commercial dyes and pigments amounted to 7×105 tons are produced annually worldwide. Ultimately, about 10–15% is wasted into the effluents of the textile industry. Chitin is abundant in nature, and it is a linear biopolymer containing acetamido and hydroxyl groups amenable to render it atmospheric by introducing amino and carboxyl groups, hence able to remove different classes of toxic organic dyes from colored effluents. Methods: Chitin was chemically modified to render it amphoteric via the introduction of carboxyl and amino groups. The amphoteric chitin has been fully characterized by FTIR, TGA-DTG, elemental analysis, SEM, and point of zero charge. Adsorption optimization for both anionic and cationic dyes was made by batch adsorption method, and the conditions obtained were used for studying the kinetics and thermodynamics of adsorption. Results: The results of dye removal proved that the adsorbent was proven effective in removing both anionic and cationic dyes (Acid Red 1 and methylene blue (MB)), at their respective optimum pHs (2 for acid and 8 for cationic dye). The equilibrium isotherm at room temperature fitted the Freundlich model for MB, and the maximum adsorption capacity was 98.2 mg/g using 50 mg/l of MB, whereas the equilibrium isotherm fitted the Freundlich and Langmuir model for AR1 and the maximum adsorption capacity was 128.2 mg/g. Kinetic results indicate that the adsorption is a two-step diffusion process for both dyes as indicated by the values of the initial adsorption factor (Ri) and follows the pseudo-second-order kinetics. Also, thermodynamic calculations suggest that the adsorption of AR1 on the amphoteric chitin is an endothermic process from 294 to 303 K. The result indicated that the mechanism of adsorption is chemisorption via an ion-exchange process. Also, recycling of the adsorbent was easy, and its reuse for dye removal was effective. Conclusion: New amphoteric chitin has been successfully synthesized and characterized. This resin material, which contains amino and carboxyl groups, is novel as such chemical modification of chitin hasn’t been reported. The amphoteric chitin has proven effective in decolorizing aqueous solution from anionic and cationic dyes. The adsorption behavior of amphoteric chitin is believed to follow chemical adsorption with an ion-exchange process. The recycling process for few cycles indicated that the loaded adsorbent could be regenerated by simple treatment and retested for removing anionic and cationic dyes without any loss in the adsorbability. Therefore, the study introduces a new and easy approach for the development of amphoteric adsorbent for application in the removal of different dyes from aqueous solutions.


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


Sign in / Sign up

Export Citation Format

Share Document