scholarly journals Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. Special article: compassionate use and clinical trial on CAR-T cells

2021 ◽  
Vol 43 ◽  
pp. S64-S67
Author(s):  
Gil Cunha De Santis
2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A578-A578
Author(s):  
Rakesh Goyal ◽  
Nicole Nasrah ◽  
Dan Johnson ◽  
William Ho

BackgroundRegulatory T cells (Treg) can dampen antitumor immune responses in the tumor microenvironment (TME) and have been shown to correlate with poor clinical outcome. Translational studies have demonstrated an accumulation of Treg in tumors after treatment with immunotherapies including CAR-T cells and anti-CTLA-4, which could potentially reflect a mechanism of adaptive immune resistance.1–2 CCR4, the receptor for the chemokines CCL17 and CCL22, is the predominant chemokine receptor on human Treg and is responsible for the migration and accumulation of Treg in the TME. Preclinical studies with orally available CCR4 antagonists have demonstrated potent inhibition of Treg migration into tumors, an increase in the intratumoral Teff/Treg ratio, and antitumor efficacy as a single agent and in combination with checkpoint inhibitors, including anti-CTLA-4.3 In a first-in-human trial conducted in healthy volunteers, the oral CCR4 antagonist FLX475 was demonstrated to be well tolerated with outstanding pharmacokinetic and pharmacodynamic properties.4 An ongoing Phase 1/2 clinical trial of FLX475 is examining the safety and preliminary antitumor activity of FLX475 as monotherapy and in combination with pembrolizumab in subjects with several types of advanced cancer.5 Given the preclinical data demonstrating a significant enhancement of the antitumor activity of anti-CTLA-4 when combined with FLX475, a Phase 2 study investigating the combination of FLX475 and ipilimumab is now being conducted in subjects with advanced melanoma.MethodsThis clinical trial is a Phase 2, multicenter, open-label, single-arm study to determine the antitumor activity of FLX475 in combination with ipilimumab in subjects with advanced melanoma previously treated with an anti-PD-1 or anti-PD-L1 agent. The primary objectives of the study are to evaluate objective response rate, and the safety and tolerability of this combination. The study will first examine the safety of the combination of the 100 mg PO QD recommended Phase 2 dose of FLX475 and the approved 3 mg/kg IV Q3W dose of ipilimumab as part of a safety run-in phase, prior to examining the degree of antitumor activity in approximately 20 subjects. Evidence of an overall response rate (ORR) notably greater than the expected ORR of ipilimumab monotherapy alone in such subjects, which has been shown to be approximately 14%,6 would provide preliminary clinical evidence in support of the clinical hypothesis that CCR4 blockade by FLX475 can significantly enhance the antitumor activity of an anti-CTLA-4 checkpoint inhibitor.Trial RegistrationClinicalTrials.gov Identifier: NCT04894994ReferencesO’Rourke D, Nasrallah M, Desai A, Melenhorst J, Mansfield K, Morrissette J, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Plesa G, Lacey S, Navenot J, Zheng Z, Levine B, Okada H, June C, Brogdon J, Maus M. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9:eaaa0984. doi: 10.1126/scitranslmed.aaa0984.Sharma A, Subudhi S, Blando J, Vence L, Wargo J, Allison JP, Ribas A, Sharma P. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers-Response. Clin Cancer Res 2019;25:1233–1238.Marshall L, Marubayashi S, Jorapur A, Jacobson S, Zibinsky M, Robles O, Hu D, Jackson J, Pookot D, Sanchez J, Brovarney M, Wadsworth A, Chian D, Wustrow D, Kassner P, Cutler G, Wong B, Brockstedt D, Talay O. Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. J Immunother Cancer 2020;8:e000764.van Marle S, van Hoogdalem E, Johnson D, Okal A, Kassner P, Wustrow D, Ho W, Smith S. Pharmacokinetics, pharmacodynamics, and safety of FLX475, an orally-available, potent, and selective small-molecule antagonist of CCR4, in healthy volunteers. J Immunother Cancer 2018; 6(Suppl 1):P484(SITC 2018).Powderly J, Chmielowski B, Brahmer J, Piha-Paul S, Bowyer S, LoRusso P, Catenacci D, Wu C, Barve M, Chisamore M, Nasrah N, Johnson D, Ho W. Phase I/II dose-escalation and expansion study of FLX475 alone and in combination with pembrolizumab in advanced cancer. Journal of Clinical Oncology 2020;38(15_suppl): TPS3163 (ASCO 2020).Long G, Mortier L, Schachter J, Middleton M, Neyns B, Sznol M, Zhou H, Ebbinghaus S, Ibrahim N, Arance A, Ribas A, Blank C and Robert C. Society for Melanoma Research 2016 Congress. Pigment Cell & Melanoma Research 2017;30:76–156.Ethics ApprovalThis study has been approved by the Institutional Review Board at each investigational site.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Israr Khan ◽  
Abdul Rafae ◽  
Anum Javaid ◽  
Zahoor Ahmed ◽  
Haifza Abeera Qadeer ◽  
...  

Background: Multiple myeloma (MM) is a plasma cell disorder and demonstrates overexpression of B cell maturation antigen (BCMA). Our objective is to evaluate the safety and efficacy of chimeric antigen receptor T cells (CAR-T) against BCMA in patients with relapsed/refractory multiple myeloma (RRMM). Methods: We conducted a systematic literature search using PubMed, Cochrane, Clinicaltrials.gov, and Embase databases. We also searched for data from society meetings. A total of 935 articles were identified, and 610 were screened for relevance. Results: Data from thirty-one original studies with a total of 871 patients (pts) were included based on defined eligibility criteria, see Table 1. Hu et al. reported an overall response rate (ORR) of 100% in 33 pts treated with BCMA CAR-T cells including 21 complete response (CR), 7 very good partial response (VGPR), 4 partial response (PR). Moreover, 32 pts achieved minimal residual disease (MRD) negative status. Chen et al. reported ORR of 88%, 14% CR, 6% VGPR, and 82% MRD negative status with BCMA CAR-T therapy in 17 RRMM pts. In another clinical trial by Han et al. BCMA CAR-T therapy demonstrated an ORR of 100% among 7 evaluable pts with 43% pts having ≥ CR and 14% VGPR. An ORR of 100% with 64% stringent CR (sCR) and 36% VGPR was reported with novel anti-BCMA CART cells (CT103A). Similarly, Li et al. reported ORR of 87.5%, sCR of 50%, VGPR 12.5%, and PR 25% in 16 pts. BCMA targeting agent, JNJ-4528, showed ORR of 91%, including 4sCR, 2CR, 10MRD, and 7VGPR. CAR-T- bb2121 demonstrated ORR of 85%, sCR 36%, CR 9%, VGPR 57%, and MRD negativity of 100% (among 16 responsive pts). GSK2857916, a BCMA targeting CAR-T cells yielded ORR of 60% in both clinical trials. Three studies utilizing bispecific CART cells targeting both BCMA & CD38 (LCARB38M) reported by Zhao et al., Wang et al., and Fan et al. showed ORR of 88%, 88%, & 100% respectively. Topp et al. reported ORR of 31% along with 5 ≥CR and 5 MRD negative status in 42 pts treated with Bi T-cells Engager BiTE® Ab BCMA targeting antigen (AMG420). One clinical trial presented AUTO2 CART cells therapy against BCMA with an ORR of 43%, VGPR of 14%, and PR of 28%. CT053CAR-BCMA showed 14sCR and 5CR with a collective ORR of 87.5% and MRD negative status of 85% in 24 and 20 evaluable pts, respectively. Likewise, Mikkilineni et al. reported an ORR of 83%, sCR of 16.7%, and VGPR & PR of 25% and 41% in 12 pts treated with FHVH-BCMA T cells. Similar results are also reported in other clinical trials of BCMA targeting CART therapy (Table 1). The most common adverse effects exhibited were grade 1-3 hematologic (cytopenia) and cytokine release syndrome (CRS) (mostly reversible with tocilizumab). Conclusion: Initial data from ongoing clinical trials using BCMA targeting CAR-T therapy have yielded promising results both in terms of improved outcome and tolerable toxicity profiles. Although two phase 3 trails are ongoing, additional data is warranted to further ensure the safety and efficacy of anti-BCMA CAR-T cells therapy in pts with RRMM for future use. Disclosures Anwer: Incyte, Seattle Genetics, Acetylon Pharmaceuticals, AbbVie Pharma, Astellas Pharma, Celegene, Millennium Pharmaceuticals.: Honoraria, Research Funding, Speakers Bureau.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 125-125
Author(s):  
Vivek Narayan ◽  
Julie Barber-Rotenberg ◽  
Joseph Fraietta ◽  
Wei-Ting Hwang ◽  
Simon F. Lacey ◽  
...  

125 Background: Prostate specific membrane antigen (PSMA) is a highly expressed tumor-associated antigen potentially amenable to chimeric antigen receptor-modified T (CAR-T) cell therapy for castration-resistant prostate cancer (CRPC). However, a primary challenge to the success of CAR-T therapy in CRPC is the immunosuppressive microenvironment, characterized by high levels of TGFβ. The immunosuppressive functions of TGFβ can be inhibited in T cells using a dominant negative TGFβ receptor (TGFβRdn), thereby enhancing antitumor immunity. Methods: We conducted a first-in-human phase 1 clinical trial to evaluate the feasibility, safety and preliminary efficacy of PSMA-directed/TGFβ-insensitive CAR-T cells (CART-PSMA-TGFβRdn) in patients with metastatic CRPC (NCT03089203). In a 3+3 dose-escalation design, patients received a single dose of 1-3 x 107/m2 (Cohort 1) or 1-3 x 108/m2 (Cohort 2) CART-PSMA-TGFβRdn cells without lymphodepleting (LD) chemotherapy. In Cohort 3, one patient received 1-3 x 108/m2 CART-PSMA-TGFβRdn cells following a LD chemotherapy regimen of cyclophosphamide and fludarabine (Cy/Flu). In Cohort -3, three patients received 1-3 x 107/m2 CART-PSMA-TGFβRdn cells following Cy/Flu. Patients underwent metastatic tumor biopsies at baseline and on day 10 following treatment. Quantitative PCR of CART-PSMA-TGFβRdn DNA was performed at serial timepoints to evaluate for CAR-T expansion and persistence in peripheral blood and trafficking to target tissues. Multiplex cytokine analysis assessed CART-PSMA-TGFβRdn bioactivity. Results: Ten patients received CART-PSMA-TGFβRdn therapy across dose-level cohorts. All CART-PSMA-TGFβRdn infusion products met target transduction efficiency. Evaluation of CAR-T cellular kinetics demonstrated dose-dependent peripheral blood T cell expansion, as well as tumor tissue trafficking in post-treatment tumor biopsies. At Cohort 2 and above, 5 of 7 treated patients developed grade ≥2 cytokine release syndrome (CRS). Marked increases in inflammatory cytokines (IL-6, IL-15, IL-2, IFNγ) correlated with high-grade CRS events. One grade 5 adverse event (sepsis) occurred in Cohort 3. PSA decline was observed in 6 of 10 patients (median decline -33.2%, range -11.6% to -98.3%), and PSA30 response occurred in 4 of 10 patients (including one patient achieving PSA < 0.1 ng/mL). Conclusions: Adoptive cellular therapy with CART-PSMA-TGFβRdn is safe and feasible in patients with metastatic CRPC. A dose-dependent and lymphodepletion chemotherapy-dependent relationship was observed with CART-PSMA-TGFβRdn cell expansion, cytokine expression, CRS, and anti-tumor effect. Correlative cell trafficking and paired tumor Nanostring analyses will be presented. Future clinical investigations seek to enhance anti-tumor efficacy, while optimizing the therapeutic window. Clinical trial information: NCT03089203.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 7024-7024 ◽  
Author(s):  
Jae Hong Park ◽  
Bianca Santomasso ◽  
Isabelle Riviere ◽  
Brigitte Senechal ◽  
Xiuyan Wang ◽  
...  

7024 Background: CD19-specific chimeric antigen receptor (CAR) modified T cells produce high anti-tumor activity in relapsed or refractory (R/R) ALL, but can be associated with cytokine release syndrome (CRS) and neurotoxicity (NTX). Herein, we report baseline and post-treatment clinical and laboratory factors associated with severe NTX (≥Grade 3) in our phase I clinical trial of CD19-specific 19-28z CAR T cells for adult patients (pts) with R/R B-ALL (NCT01044069). Methods: 51 adult pts with R/R B-ALL were treated with 19-28z CAR T cells following conditioning chemotherapy at MSKCC. In order to identify clinical and serum biomarkers associated with severe NTX (sNTX), we examined demographic, treatment, and clinical blood parameters as well as in vivo CAR T expansion and serum cytokines, and performed univariate and multivariate analysis. Results: In this cohort of ALL pts, 20, 8, 2, 18 and 3 pts experienced Gr 0, 1, 2, 3, and 4 NTX, respectively. No pt developed grade 5 NTX. Disease burden (≥50% blasts) at the time of T cell infusion (p = 0.0045) and post-treatment ≥Gr3 CRS (p = 0.0010) were significantly associated with sNTX, but we found no association with age, weight, T cell dose, choice of conditioning chemotherapy (Flu/Cy s. Cy), and prior lines of treatment. Among the clinical and blood parameters, fever, low PLT, high ferritin and MCHC as well as elevated GM-CSF, IFNγ, IL-15, IL-5, IL-10, IL-2 at day 3 of T cell infusion at day 3 of T cell infusion were significantly associated with sNTX (all p < 0.01). While some of these cytokines were also elevated in severe CRS cases, IL-5 and IL-2 at day 3 were unique to sNTX. Furthermore, in vivo peak CAR T expansion at day 7 (p = 0.0001) significantly correlated with sNTX (p < 0.01). Lastly, multivariate analysis revealed baseline PLT < 60 or MCHC > 33.2% and morphologic disease ( > 5% blasts) has 95% sensitivity and 70% specificity of identifying sNTX pts. Conclusions: These data provide a characterization of early clinical and serum biomarkers of sNTX in adult pts receiving 19-28z CAR T cells and should help identify appropriate pts for early intervention strategy to mitigate NTX. Clinical trial information: NCT01044069.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2539-2539 ◽  
Author(s):  
Paolo Fabrizio Caimi ◽  
Jane Reese ◽  
Folashade Otegbeye ◽  
Dina Schneider ◽  
Kamal Chamoun ◽  
...  

2539 Background: AntiCD19 CAR-T cells have shown encouraging anti-lymphoma activity. Decreasing the time from apheresis to CAR-T infusion can make this therapy available to pts with rapid progression. We present the interim results of a phase I clinical trial using on-site CAR-T manufacture. Methods: Adult pts with r/r CD19+ B cell lymphomas who failed ≥ 2 lines of therapy were enrolled. Autologous T cells were transduced with a lentiviral vector (Lentigen Technology, Inc,LTG1563) encoding an antiCD19 binding motif, CD8 linker and TNFRSF19 transmembrane region, and 4-lBB/CD3z domains. GMP-compliant manufacture was done using CliniMACS Prodigy, in a 12-day culture. Dose levels were 0.5, 1 and 2 x 106 CAR-T cells/kg. Lymphodepletion was done with cyclophosphamide (60mg/kg x 1) and fludarabine (25mg/m2/d x 3). Results: 7 pts (4 women, 3 men) were enrolled. Median age was 60y [range 43-69]. Diagnoses were DLBCL (n = 3) PMBCL, follicular lymphoma (FL), transformed FL, and transformed lymphoplasmacytic lymphoma; with a median of 4 previous treatments. Six pts had symptomatic refractory disease. CAR-T cell product manufacture was successful in all pts. Mean transduction rate was 44% [range 29-57]. CAR-T cell doses were 0.5 x 106/kg (n = 3) and 1 x 106/kg (n = 4). Median apheresis to infusion time was 13 days [range 13–20], 5 products were infused fresh. CAR-T persistence based on vector sequence, peaked in peripheral blood MNCs between days 14-21. Five pts are evaluable for safety. CRS grade 1 - 2 (Lee) occurred in 4 pts; with 3 requiring treatment. Grade 4 CRES (CARTOX-10) occurred in 1 pt, with resolution after corticosteroids; considered a DLT as it lasted more than 72 hours. No treatment-related mortality has occurred. 4/5 evaluable pts have achieved complete response. One pt did not respond and died. After a median follow up 3 months, all responding pts are alive and 1 relapsed 6 mo after treatment. Conclusions: Second generation antiCD19 CAR-T cells with TNFRS19 transmembrane domain have clinical activity against refractory NHL. Short manufacture time achieved by local CAR-T cell manufacture with the CliniMACS Prodigy enables treatment of a very high risk NHL population. Clinical trial information: NCT03434769.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 10035-10035
Author(s):  
Payal D Shah ◽  
Alexander Chan Chi Huang ◽  
Xiaowei Xu ◽  
Paul J. Zhang ◽  
Robert Orlowski ◽  
...  

10035 Background: Advanced relapsed/refractory melanoma and metastatic triple-negative breast cancer are lethal diseases for which effective therapies are limited. We conducted a pilot phase I clinical trial (NCT03060356) to establish the safety and feasibility of intravenous autologous chimeric antigen receptor (CAR) T cell immunotherapy targeting cMET, a cell-surface antigen that is highly expressed in these cancers. Methods: Subjects had metastatic or unresectable melanoma (Mel) or triple-negative breast cancer (BC) with ≥30% expression of cMET on archival tissue or screening biopsy. Eligible subjects had measurable disease and progression on at least 1 prior therapy. Patients (pts) received up to 6 doses (1x108 total T-cells per dose) of RNA electroporated anti-cMET CAR T cells over a 2-week period without antecedent lymphodepleting chemotherapy. Subjects underwent pre- and post-infusion biopsies. The primary objective was to determine feasibility and safety of treatment. Results: 77 subjects (39 mel, 38 BC) were prescreened for tumor cMET expression and 37 (17 mel, 20 BC) met the eligibility threshold. Seven pts (4 BC, 3 Mel) received cMET-directed CAR T infusions on study. Mean age was 50 years (35-64); median (M) ECOG 0 (0-1); M prior lines of chemotherapy/immunotherapy were 4/0 for BC pts and 1/3 for Mel pts. 6 of 7 pts received all planned CAR T cell infusions, and 1 received 5 infusions. 5 pts experienced grade (G) 1 or G 2 toxicity that was possibly or definitely related to study. Toxicities occurring in ≥1 pt included: anemia (n = 3), fatigue (n = 2), and malaise (n = 2). No G ≥3 toxicities or cytokine release syndrome were observed. No pts discontinued therapy due to toxicity. Best response was stable disease in 4 pts (2 BC, 2 Mel) and PD in 3 pts (2 BC, 1 Mel). Messenger RNA signals corresponding to CAR T cells were detected by RT-PCR in the peripheral blood of all pts during the infusion period and in 2 pts after the infusion period. 6 pts underwent baseline biopsy and 4 pts underwent post-infusion biopsy. Immunohistochemical stains of CD3, CD4, CD8, CD163, L26, PD1, PDL1, Foxp3, Ki67, Granzyme B and Phospho-S6 were performed on pre- and post-treatment tissue biopsies and are being evaluated. Conclusions: Intravenous administration of RNA-electroporated cMET-directed CAR T cells was safe and feasible. Future directions include examination of this target using a lentiviral construct in combination with lymphodepleting chemotherapy. Clinical trial information: NCT03060356.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. TPS2647-TPS2647 ◽  
Author(s):  
David Henry Michael Steffin ◽  
Sai A Batra ◽  
Purva Rathi ◽  
Linjie Guo ◽  
Wenpeng Li ◽  
...  

TPS2647 Background: CAR T therapies have been successful against hematologic malignancies, but have benefited only a handful of patients with solid cancers. Glypican 3 (GPC3) is an attractive immunotherapeutic target due to its preferential expression on multiple pediatric and adult solid cancers and lack of expression on non-malignant tissues. GPC3-CAR T cells were tested preclinically and inclusion of the 4-1BB costimulatory endodomain with IL-15 and IL-21 co-expression enabled CAR T cells to expand and persist the most in vitro and in vivo and led to robust antitumor activity in vivo. We are now testing GPC3-CAR T cells with IL15 and IL-21 for the first time in children with relapsed/refractory liver tumors. Methods: In this Phase 1 trial (GAP, NCT02932956), we are evaluating patients in 3 cohorts: 1) GPC3-CAR alone; 2) GPC3-CAR and IL-15; 3) GPC3-CAR with IL-15 and IL-21. We will 1) define the safety and establish the Recommended Phase 2 Dose (RP2D) of GPC3-CAR T cells co-expressing IL-15 and IL-21; 2) determine persistence and anti-tumor activity of GPC3-CAR T cells; 3) examine changes in gene and protein expression in the tumor microenvironment associated with potential immune escape mechanisms. Inclusion criteria are the following: age ≤18; histology proven, GPC3-positive tumor; life expectancy>12 weeks; Child-Pugh-Turcotte score<7; serum AST<5 times ULN; total bilirubin<3 times ULN for age; INR ≤1.7; absolute neutrophil count>500/μl; platelet count>20,000/μl; Hgb≥9.0 g/dl. Toxicity will be monitored using the Common Terminology Criteria of Adverse Events v4. The RP2D will be determined by the standard 3+3 dose escalation method using 5 dose levels. Persistence will be quantified using RT-PCR and flow cytometry. Antitumor activity will be defined by 3D imaging using RECIST 1.1 criteria and the immune-related response criteria. Immune-escape will be examined using single cell RNA sequencing and imaging of paraffin-embedded tissues using codetection by indexing to evaluate candidate proteins. Data will be analyzed via descriptive statistics. Cohort 1 of this study is now open for enrollment. Clinical trial information: NCT02932956.


2020 ◽  
Vol 38 (6_suppl) ◽  
pp. TPS269-TPS269
Author(s):  
Vivek Narayan ◽  
Whitney Gladney ◽  
Gabriela Plesa ◽  
Neha Vapiwala ◽  
Erica L. Carpenter ◽  
...  

TPS269 Background: Adoptive immunotherapy with Chimeric Antigen Receptor (CAR)-T cells is a novel approach for the treatment of prostate cancer. However, the prostate cancer immunosuppressive microenvironment, including high levels of TGFβ, may limit the therapeutic potential of re-directed T cells upon tumor infiltration. The inhibition of TGFβ signaling via co-expression of a dominant negative TGFβ receptor (TGFβRdn) can enhance antitumor immunity. Co-expression of TGFβRdn on PSMA-redirected CAR-T cells in in vivo disseminated tumor models led to increased T cell proliferation, enhanced cytokine secretion, resistance to exhaustion, long-term persistence, and greater induction of tumor eradication. Methods: We are conducting a first-in-human phase 1 clinical trial evaluating the safety and preliminary efficacy of lentivirally-transduced PSMA-redirected/TGFβ-insensitive CAR-T cells (CART-PSMA-TGFβRdn) in metastatic CRPC (NCT03089203). In a 3+3 dose-escalation design, patients received a single dose of 1-3 x 107/m2 (Cohort 1) or 1-3 x 108/m2 (Cohort 2) CART-PSMA-TGFβRdn cells without lymphodepleting chemotherapy. In Cohort 3, 1-3 x 108/m2 CART-PSMA-TGFβRdn cells are administered following a lymphodepleting chemotherapy regimen of cyclophosphamide and fludarabine (cy/flu). A currently accruing modified protocol seeks to optimize the therapeutic window with CART-PSMA-TGFβRdn (CAR-T dose of 1-3 x 107/m2 following lymphodepleting cy/flu). Eight patients have received a single dose of CART-PSMA-TGFβRdn. CAR-T expansion and persistence in peripheral blood and trafficking to target tissues is evaluated via quantitative PCR of CART-PSMA-TGFβRdn DNA. Bioactivity of CAR-T cells in peripheral blood is evaluated via multiplex immunoassays. Additional correlative analyses will interrogate the therapeutic contribution of TGFβRdn, as well as early markers of response and resistance to CART-PSMA-TGFβRdn therapy. Clinical trial information: NCT03089203.


Sign in / Sign up

Export Citation Format

Share Document